Present-day interest in pyrochlore materials is immense. Academic and industrial researchers working with pyrochlore materials need a fundamental understanding of what pyrochlores are and their potential applications. Pyrochlore Ceramics: Properties, Processing, and Applications provides key knowledge and information needed on pyrochlore materials. With an emphasis on recent research developments, the contents review a broad spectrum of pyrochlore systems, focusing on their structures, their successful synthesis, multifaceted properties, and applications. The book brings all aspects together and presents recent research findings on pyrochlore materials. It will be the definitive text for all researchers who aim to venture into the eclectic world of pyrochlores. In addition, the book will be of interest to researchers who are already working on pyrochlore materials, providing them with novel information on the uncommon virtues of pyrochlore systems. All chapters presented in the book are at the cutting edge of research and have never been assembled in book form before. Any researcher working in related fields will gain not only a historical perspective but also a comprehensive overview of recent developments. The book will be a valuable reference resource for academic and industrial researchers working in ceramics and materials science, mechanical, electronics, and chemical engineering, as well as physical and chemical science. Provides an extensive review of novel pyrochlore material systems Compares different types of pyrochlore materials, including their structure, properties, and performance Describes potential applications INDICE: Section 1. Process and structure of pyrochlores 1. Crystal chemistry and phase transitions in pyrochlore and related structures Daniel Atencio, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil 2. Crystal growth of magnetic pyrochlore oxides and their structure-property correlations Surjeet Singh and Abhisek Bandyopadhyay, Department of Physics, Center for Energy Science, Indian Institute of Science Education and Research, Pune, Maharashtra, India 3. Raman spectroscopy study of disorder phenomena and size effects in pyrochlores María Luisa Sanjuán, Instituto de Nanociencia y Materiales de Aragón, Csic-Universidad de Zaragoza, Department of Materials for Energy, Zaragoza, Spain 4. Effect of different fabrication avenues of pyrochlore ceramics toward order-disorder transitions Gordon J. Thorogood, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, Australia; Shirley Chang and Sarah C. Finkeldei, University of California, Irvine, Department of Chemistry, Irvine, CA, United States 5. Process-structure correlations in complex A2B2O7 systems: Nanoparticles and ceramics Jejitti Aravind Reddy and Anirban Chowdhury, MAPS (Materials' Process-Structure Correlations) Laboratory, Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Bihar, India Section 2. Functional properties of pyrochlore systems 6. Electrochemical properties of complex pyrochlores Maria Koroleva, Aleksei G. Krasnov, and Irina Vadimovna Piir, Institute of Chemistry, Federal Research Center Komi Science Center, Ural Branch, Russian Academy Of Sciences, Syktyvkar, Russia 7. Ionic conductivity in materials with a pyrochlore structure Balaji P. Mandal and A.K. Tyagi, Chemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, India 8. Nonferroelectric relaxor dielectric properties of pyrochlore phases M.V. Talanov, Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia 9. Unusual magnetic properties of ternary Bi- and Ln-containing pyrochlores: From cooperative paramagnetism to canted antiferromagnetism and reentrant spin glass Olga G. Ellert and Anna V. Egorysheva, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia 10. Pyrochlores: Prospects as a photocatalyst for environmental and energy applications Nishesh Kumar Gupta, Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea; Herlys Viltres, Instituto Politecnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, Mexico; K. Sandeep Rao and S.N. Achary, Chemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, India 11. Photoluminescence in pyrochlore structures P. Prabhakar Rao, Athira K.V. Raj, and T.S. Sreena, Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India Section 3. Diverse applications of pyrochlore materials 12. Transparent ceramics based on pyrochlores Liqiong An, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China; Akihiko Ito, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan; Zhengjuan Wang, Guohong Zhou, and Shiwei Wang, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; and Takashi Goto, Institute for Materials Research, Tohoku University, Sendai, Japan 13. Pyrochlores as cathodes in solid oxide fuel cells Nicoleta Cioatera, Elena-Adriana Voinea, and Cezar-Ionu? Spinu, Chemistry Department, University Of Craiova, Craiova, Romania
- ISBN: 978-0-323-90483-4
- Editorial: Elsevier
- Encuadernacion: Rústica
- Páginas: 570
- Fecha Publicación: 01/06/2022
- Nº Volúmenes: 1
- Idioma: Inglés