
Printed Electronics: Materials, Technologies and Applications
Cui, Zheng
Ma, Changqi
Su, Wenming
Zhao, Jianwen
Chen, Zheng
Lin, Jian
Qui, Song
This book provides an overview of the newly emerged and highly interdisciplinary field of printed electronics Provides an overview of the latest developments and research results in the field of printed electronics Topics addressed include: organic printable electronic materials, inorganic printable electronic materials, printing processes and equipments for electronic manufacturing, printable transistors, printable photovoltaic devices, printable lighting and display, encapsulation and packaging of printed electronic devices, and applications of printed electronics Discusses the principles of the above topics, with support of examples and graphic illustrations Serves both as an advanced introductory to the topic and as an aid for professional development into the new field Includes end of chapter references and links to further reading INDICE: Preface .1. Introduction .1.1 What is printed electronics .1.2 The importance of developing printed electronics .1.3 Multidisciplinary nature of printed electronics .1.4 Content and structure of the book .References .2. Organic printable electronic materials .2.1 Introduction .2.2 Organic Conductive Materials .2.2.1 Characteristics of organic conductive material .2.2.2 History of organic Conductive materials .2.2.3 Conductive Polymer .2.2.3.1 Structural Conductive Polymer .2.2.3.2 Composite conductive polymer .2.2.4 PEDOT .2.3 Printable Organic Small Molecular Semiconductor .2.3.1 Fused aromatic compounds .2.3.2 Heterocyclic sulfur compounds and oligothiophenes .2.3.3 Other materials with high mobility .2.4 Printable Polymeric Semiconductor .2.4.1 P–type Polymer Semiconductors .2.4.1.1 Sulfur–containing Heterocyclic Polymeric Semiconductors .2.4.1.2 Phenyl–containing Polymeric Semiconductors .2.4.1.3 Other p–Type Polymeric Semiconductors .2.4.2 N–Type Polymer Semiconductors .2.4.3 Ambipolar Transistor and Related Polymer Materials .2.4.4 Outlook .2.5 Other Organic Materials for Printable Electronic .2.5.1 Organic insulating Materials .2.5.2 Organic materials for Sensors .2.6 Summary .References .3. Inorganic printable electronic materials .3.1 Introduction .3.2 Metallic Materials .3.2.1 Metallic ink .3.2.2 Post printing process .3.2.3 Metal nanowire .3.3 Transparent Oxide .3.3.1 Transparent oxide semiconductor and conductor .3.3.2 Low temperature solution processing .3.3.3 Doped transparent oxide nanoparticles .3.4 Single–Wall Carbon Nanotube .3.4.1 Preparation and selective chemistry of SWNT .3.4.2 Purification of SWNT .3.4.3 Metallic SWNT thin film .3.4.4 Semiconducting SWNT thin film .3.5 Graphene .3.6 Silicon and Germanium .3.7 Metal chalcogenides semiconductor and Quantum Dots .3.7.1 Metal chalcogenidesSemiconductor .3.7.2Quantum dots .3.8 Nanoparticle/Polymer dielectric composites .3.9 Summary .References .4. Printing processes and equipments .4.1 Introduction .4.2 Jet printing .4.2.1 Inkjet printing .4.2.1.1 Working principles .4.2.1.2 Pattern preparation .4.2.1.3 Application in printed electronics .4.2.2 Aerosol jet printing .4.2.2.1Working principle .4.2.2.2 Pattern preparation .4.2.2.3 Advantages and challenges .4.2.3 Electrohydrodynamic jet printing .4.2.4 Advantages and disadvantages .4.3 Direct replicate printing .4.3.1 Screen printing .4.3.1.1 Working principle .4.3.1.2 Screen mask .4.3.1.3 Advantages and disadvantages .4.3.1.4 Applications .4.3.2 Gravure printing .4.3.2.1 Principle and system .4.3.2.2 Gravure plate .4.3.2.3 Advantages and disadvantages .4.3.2.4 Applications in printed electronics .4.3.3 Flexographic Printing .4.3.3.1 Principle and system .4.3.3.2 Printing plate .4.3.3.3 Advantages and disadvantages .4.3.3.4 Applications in printed electronics .4.4 Indirect replicate printing .4.4.1 Offset printing .4.4.2 Gravure offset printing .4.4.3 Pad printing .4.5 Pre–printing processes .4.5.1 Pattern design .4.5.2 Modification of surface energy .4.5.3 Surface coating .4.5.4 Embossing and nanoimprinting .4.6 Post–printing processes .4.6.1 Sintering .4.6.2 UV curing .4.6.3 Annealing .4.7 Summary .5. Printed thin film transistors .5.1 Introduction .5.2 Types of transistors .5.3 Working principles of transistors .5.3.1 Basic Mechanism of MOSFETs .5.3.2 Charge carriers and carrier mobility .5.3.3 Basic parameters of TFT .5.3.3.1 Characteristics .5.3.3.2 Parameters .5.4 Structures and fabrication of TFTs .5.4.1 Structures of TFTs .5.4.2 Characteristics of TFTs .5.4.3 Fabrication of TFTs .5.4.3.1 Fabrication of electrodes .5.4.3.2 Fabrication of active layer .5.4.3.3 Fabrication of dielectric layer .5.5 Fully printed TFTs .5.5.1 Printability of electronic materials .5.5.2 Influence of surface morphology .5.5.3 Interface effect of printed TFTs .5.5.3.1 Effect of semiconductor/dielectric interface .5.5.3.2 Effect of semiconductor/semiconductor interface .5.5.3.3 Effect of semiconductor/electrode interface .5.5.4 Effect of channel length .5.5.5 Summary of issues in printing TFTs .5.5.5.1 Printable inks and printing processes .5.5.5.2 Printed electrodes .5.5.5.3 Printed dielectric thin films .5.6 Advances in printed TFTs .5.6.1 Printed inorganic TFTs .5.6.1.1 SWCNT TFTs .5.6.1.2 Metal oxide TFTs .5.6.1.3 Metal dichalcogenide and graphene TFTs .5.6.2 Printed organic TFTs .5.7 Basics of printed logic circuits .5.7.1 NAND and NOR gates .5.7.2 Inverter .5.7.3 Ring oscillator .5.7.4 Flip–flop .5.7.5 Backplane driving circuits for display .5.8 Summary .References .6. Printed organic thin film solar cells .6.1 Introduction .6.1.1 Solar energy and its utilization .6.1.2 Classification of solar cells .6.1.3 Brief history of organic thin film solar cells .6.2 Working principles and characterization of organic solar cells .6.2.1 Physical processes .6.2.2 Basic structures .6.2.3 Characterization .6.2.3.1 I–V characteristics .6.2.3.2 Spectrum response .6.2.4 The main factors influencing device performance .6.2.4.1 Photon absorption ability of organic semiconductors .6.2.4.2 Energy level arrangement of donor and acceptor .6.2.4.3 Morphology of photoactive layer .6.3 Materials for organic solar cells .6.3.1 Transparent substrates .6.3.2 Transparent conductive electrodes .6.3.2.1 Metal oxide film .6.3.2.2 Conductive polymer film .6.3.2.3 Thin metal film and metal grid .6.3.2.4 Carbon–rich Materials .6.3.3 Organic semiconductor materials .6.3.3.1 p–type organic semiconductors .6.3.3.2 n–type organic semiconductors .6.3.4 Inorganic semiconductors .6.3.5 Other functional materials .6.4 Inverted and tandem organic solar cells .6.4.1 Inverted organic solar cells .6.4.2 Tandem organic solar cells .6.4.3 Inverted tandem organic solar cells .6.5 Fabrication methods .6.5.1 Spin coating .6.5.2 Doctor blade coating .6.5.3 Screen printing .6.5.4 Inkjet printing .6.5.5 Other thin film deposition techniques .6.6 Roll–to–roll processing .6.7 Printable perovskite solar cells .6.8 Summary .References .7. Printed organic light emission and display .7.1 Introduction .7.1.1 Overview of lighting and display .7.1.2 Overview of organic light emitting diode (OLED) .7. 2 Mechanism of organic light emission .7.2.1 Charge injection and transport .7.2.2 Exciton formation and light emission .7.2.3 Characterization of OLED performance .7.2.3.1 Luminous efficacy .7.2.3.2 Quantum efficiency .7.2.3.3 Color .7.2.3.4 Lifetime .7. 3 Structures and materials of OLED .7. 3. 1 Small molecular OLED .7. 3.1.1Typical structure .7. 3.1.2 Functional layers .7. 3.1.3 Fabrication process .7. 3. 2 Polymer OLED .7. 3. 3 General OLED materials .7. 3.3.1 Charge injection materials .7. 3.3.2 Charge transport materials .7. 3.3.3 Emitter materials .7. 3. 4 Soluble OLED materials .7.3.4.1 Printable polymer OLED .7.3.4.2 Printable small molecular OLED .7.3.4.3 Cross–linking materials for printable OLED .7. 4 White lighting OLED .7. 4. 1 White light emission mechanism .7. 4. 2 Important parameters .7.4.2.1 CRI .7.4.2.2 Efficiency and light extraction .7.4.2.3 Lifetime .7. 4. 3 Investment on OLED lighting .7.5 Fabrication of OLED by printing .7.5.1 Spin and slot die coating .7.5.2 Inkjet printing .7.5. 3 Screen printing .7.5.4 Roll–to–roll printing .7.5.5 Current status of printed OLED industry .7.6 Summary .References .8. Encapsulation Technology for Organic Electronic Devices .8.1 Introduction .8.2 Aging of organic electronic devices .8.2.1 Characteristics and mechanisms of aging .8.2.2 Requirements for organic electronics encapsulation .8. 3 Principle of encapsulation .8.3.1 Water/oxygen penetration mechanism through thin films .8.3.2 Organic/inorganic multi–layer encapsulation .8.3.3 Measurement of encapsulation property .8.4 Thin film encapsulation technology .8.4.1 History of thin film encapsulation .8.4.2 Single layer thin film encapsulation .8.4.3 Multi–layer thin film encapsulation .8.4.4 BarixTM thin film encapsulation .8.4.5 Thin film deposition methods .8.4.5.1 PECVD .8.4.5.2 ALD .8.4.5.3 Parylene deposition .8.4.6 Flexibility of encapsulation thin film .8.4.7 Trends of thin film encapsulation .8.5 Applications of thin film encapsulation .8.5.1 Encapsulation of flexible OLED .8.5.2 Encapsulation of flexible OPV .8.6 Summary .Reference .9. Applications and future prospects of printed electronics .9.1 Introduction .9.2 Application areas of printed electronics .9.2.1 Organic photovoltaic .9.2.2 Flexible display .9.2.3 Organic lighting .9.2.4 Electronic devices and circuits .9.2.5 Integrated intelligent systems .9.3 Challenges .9.3.1 Materials .9.3.2 Printing process and equipment .9.3.3 Encapsulation .9.3.4 Design methodology and standardization .9.4 Summary and outlook .References .Index
- ISBN: 978-1-118-92092-3
- Editorial: Wiley–Blackwell
- Encuadernacion: Cartoné
- Páginas: 360
- Fecha Publicación: 25/05/2016
- Nº Volúmenes: 1
- Idioma: Inglés