Fundamentals of Polymer Science for Engineers

Fundamentals of Polymer Science for Engineers

Fakirov, Stoyko

106,08 €(IVA inc.)

Filling a gap in the market, this textbook provides a concise, yet thorough introduction to polymer science for advanced engineering students and practitioners, focusing on the chemical, physical and materials science aspects that are most relevant for engineering applications. After covering polymer synthesis and properties, the major section of the book is devoted to polymeric materials, such as thermoplastics and polymer composites, polymer processing such as injection molding and extrusion, and methods for large–scale polymer characterization. The text concludes with an overview of engineering plastics. The emphasis throughout is on application–relevant topics, and the author focuses on real–life, industry–relevant polymeric materials. INDICE: Preface    xv .Acknowledgments xvii .Part One Introduction    1 .1 Introduction 3 .1.1 Milestones in the Development of Polymer Science 3 .1.2 Basic Terms and De nitions in Polymer Science 11 .1.2.1 Polymer 11 .1.2.2 Monomer 12 .1.2.3 End Groups 13 .1.2.4 Degree of Polymerization 13 .1.2.5 Copolymers 13 .1.2.6 Average Molecular Weights and Distributions 14 .1.2.7 Molecular Weight and Molar Mass 16 .1.2.8 Polymer Morphology 17 .1.2.9 Thermoplastics 17 .1.2.10 Elastomers 18 .1.2.11 Plastics 19 .1.2.12 Thermosetting  Resin 19 .1.2.13 Polymer Blends 19 .1.2.14 Tacticity 20 .1.2.15 Polymerization and Functionality 20 .1.2.16 Polymerization Processes 20 .1.2.17 Addition or Chain Polymerization 21 .1.2.18 Step Polymerization 23 .1.2.19 Molecular  Architecture 27 .1.2.20 Phase 27 .1.3 Bonding Opportunities in Chemistry 31 .1.3.1 Primary Bonds 31 .1.3.2 Typical Primary Bond Distances and  Energies 32 .1.3.3 Secondary Bond Forces 32 .1.3.3.1 Dipole Forces 33 .1.3.3.2 Hydrogen Bonds 33 .1.3.3.3 Interrelation of Intermolecular Forces    34  General  Encyclopedias and Dictionaries 36 References  and  Literature Recommendations 36 .Part Two Physical Properties of Polymers      41 .2 Flexibility of Polymer Chains and Its Origin 43 .2.1 Conformational  Stereoisomerism  of Macromolecules 43 .2.2 Conformational Statistics  of  Chain Models 49 .2.3 Types of Flexibility and Their Quantitative Treatment 53 .3 Amorphous State of Polymers 59 .3.1 Characterization of State of   Matter 59 .3.2 State of Matter and Phase Transitions of Condensed Substances. Glass Transition 61 .3.3 Deformation of Polymers. Three Deformational (Relaxational) States of Polymers 64 .3.4 Relaxation Phenomena 71 .3.4.1 Relaxation Phenomena in Low Molecular Weight   Substances 71 .3.4.2 Relaxation Phenomena in High Molecular Weight    Substances 72 .3.4.3 Time Temperature Superposition (WLF Equation) 77 .3.5 Glassy State of Polymers 79 .3.5.1 Dependence of Glass Transition Temperature on Chemical Composition and Structure of the Polymer 79 .3.5.2 Peculiarities of Polymer Glasses 83 .3.6 High Elastic State of Polymers 85 .3.6.1 Molecular Kinetic Interpretation of High   Elasticity 86 .3.6.2 Thermodynamic Interpretation of High Elasticity 87 .3.7 Viscous Liquid State of Polymers 88 .3.7.1 Molecular Mechanism of Flow. Rheology of Molten  Polymers 88 .3.7.2 Mechanical Glassifying of Polymer Melts. Importance of Viscous Liquid State for Polymer Processing 91 .3.8 Mechanical Models of Linear Polymers 93 .3.9 Structure and Morphology of Amorphous Polymers, Polymer Melts, and Solutions 95 .3.10 Liquid Crystalline Polymers 98 .References 101 .4 Crystalline Polymers 103 .4.1 Peculiarities of Crystalline Polymers. Degree of Crystallinity 103 .4.2 Prerequisites  for  Polymer Crystallization 106 .4.3 Kinetics and Mechanisms of Crystallization 112 .4.3.1 Thermodynamics  of  Nuclei Formation 112 .4.3.2 Nuclei Formation in Polymer Systems 113 .4.3.3 Dependence of the Rate of Nuclei Formation on Temperature 114 .4.4 Growth of Nuclei (Crystals) 116 .4.4.1 Crystal Growth Theories 116 .4.4.2 Dependence of Crystal Growth Rate on Temperature 118 .4.5 Total Crystallization Rate 119 .4.5.1 Mathematical Description of Phase Transition Kinetics 119 .4.5.2 Basic Factors of the Total Crystallization Rate of Polymers 121 .4.6 Melting and Recrystallization 124 .4.6.1 Melting and Partial Melting 124 .4.6.2 Thermodynamic Description of Melting Process and Melting Interval 125 .4.6.3 Recrystallization 126 .4.7 Morphology and Molecular Structure of Crystalline   Polymers 127 .4.7.1 Development of Ideas About the Morphology and Structure of Polymers 128 .4.7.1.1 Structure of Crystalline Polymers in an Isotropic   State 128 .4.7.1.2 Structure of Crystalline Polymers in an Oriented    State 131 .4.7.2 Polymer Single Crystals 134 .4.7.3 Spherulites 136 .4.7.4 Crystalline Fibrils 138 .5 Mechanics of Polymers 141 .5.1 Basic Terms and De nitions 141 .5.2 Nature of Neck Formation 147 .5.3 Strength  of Polymers and Long–term  Strength 149 .5.4 Polymer Failure Mechanism and Theories 151 .Reference 155 .6 Polymer Solutions 157 .6.1 Development of Ideas Regarding the Nature of Polymer Solutions 157 .6.2 Thermodynamics  of  Polymer Solutions 159 .6.3 Flory Huggins Theory 162 .6.4 Concentrated Polymer Solutions. Plasticizing 164 .References   165 .7 Polymer  Molecular Weights 167 .7.1 Types of Molecular  Weights 167 .7.1.1 Number–Average Molecular Weight 167 .7.1.2 Weight–Average  Molecular Weight 168 .7.1.3 z–Average  Molecular Weight 169 .7.2 Polydispersity and Molecular Weight Distribution 170 .7.3 Methods for Determining the Weight and Sizes of Macromolecules 172 .7.3.1 Types of Methods for Molecular Weight Determination 172 .7.3.2 Osmometric Determination of Molecular Weight 174 .7.3.3 Molecular Weight Determination via Light Scattering 174 .7.3.4 Diffusion Method for Molecular Weight Determination 177 .7.3.6 Sedimentation Methods for the Determination of Molecular Weight and its Distribution  178 .7.3.8 Determination of Molecular Weight and its Distribution via the Method of Gel Permeation Chromatography 182 .Other Methods for Determining Molecular Weight 185 .7.4 Methods for Determining the Shape and Size of Macromolecules      186 .8 Methods for the Characterization and Investigation of Polymers        189 .8.1 Diffraction Methods 189 .8.1.1 Wide– and Small–Angle X–Ray Diffraction    190 .8.1.2 Electron Diffraction   195 .8.1.3 Light Diffraction   196 .8.1.4 Neutron Diffraction    196 .8.2 Microscopic  Methods 197 .8.2.1 Light Microscopy with Common and Polarized   Light 198 .8.2.2 Electron Microscopy (Transmission and Scanning)     199 .8.2.3 Atomic Force Microscopy    203 .8.3 Thermal  Methods 205 .8.3.2 Calorimetric Techniques for the Investigation of Polymer Structure and Transitions    205 .Fast Scanning Calorimeter  (Chip  Calorimeter) 209 .8.5 Spectroscopic Techniques for the Investigation of Polymer Structure and Conformational Studies of Macromolecules 210 .Static and Dynamic–Mechanical Techniques     212 .8.5.1 Static Techniques    212 .8.5.2 Dynamic  Techniques 214 .8.5.3 Density Measurements    214 .References and Sources used for Part   Two 217 .Part Three     Synthesis of Polymers     219 .9 Polycondensation (Condensation Polymerization) 221 .9.1 Introduction 221 .9.2 Equilibrium  Polycondensation 225 .9.2.1 Formation  of Polymer Chain 225 .9.2.2 Molecular  Weight  Distribution in Equilibrium  Polycondensation 225 .9.2.3 Destructive Reactions in Equilibrium   Polycondensation 227 .9.2.4 Termination of Polymer Chain Growth 229 .9.2.4.1 Chemical Changes in Functional Groups 230 .9.2.4.2 Stoichiometric  Imbalance  of Monomers 231 .9.2.4.3 Equilibrium Establishment Between the Polycondensation and Low Molecular Weight Products 232 .9.2.5 Kinetics of Equilibrium  Polycondensation 233 .9.2.6 Equilibrium  Copolycondensation 234 .9.3 Non–equilibrium Polycondensation 235 .9.3.1 General  Characteristics  of  Non–equilibrium Polycondensation 235 .9.3.2 Ways of Performing Non–equilibrium Polycondensation 236 .9.3.2.1 Interphase Polycondensation     237 .9.4 Polycondensation in Three Dimensions 239 .Reference 240 .10 Chain Polymerization 241 .10.1 Introduction 241 .10.1.1 Living Polymerization 243 .10.2 Radical Polymerization 244 .10.2.1 Initiation of Radical  Polymerization 244 .10.2.2 Propagation (Chain Growth) 246 .10.2.2.1 Bonding Types of Monomer Units 246 .10.2.3 Termination of Chain Growth 249 .10.2.3.1 Inactivation at a Favorable Meeting of Two Macroradicals 249 .10.2.3.2 Chain  Transfer 249 .10.2.4 Kinetics of Radical Polymerization 251 .10.2.4.1 General Kinetic Scheme of Radical  Polymerization 252 .10.2.4.2 Thermodynamics of Polymerization 254 .10.3 Radical Copolymerization 255 .10.3.1 Basic Equation of  Copolymerization 256 .10.3.2 Methods for  Performing Radical Polymerization 258 .10.3.2.1 Bulk Polymerization 259 .10.3.2.2 Polymerization in Solution 259 .10.3.2.3 Emulsion Polymerization 259 .10.3.2.4 Suspension (Beads) Polymerization 260 .10.4 Ionic Polymerization 261 .10.4.1 Introduction 261 .10.4.2 Cationic Polymerization 262 .10.4.2.1 Initiation  of  Cationic Polymerization 262 .10.4.2.2 Propagation (Polymer Chain Growth) 263 .10.4.2.3 Termination of Polymer Chain Growth 264 .10.4.2.4 Kinetics of Cationic  Polymerization 265 .10.4.3 Anionic Polymerization 267 .10.4.3.1 Initiation  of  Anionic Polymerization 267 .10.4.3.2 Polymer Chain Growth 268 .10.4.3.3 Termination of Polymer Chain Growth 270 .10.4.3.4 Kinetics of Anionic  Polymerization 270 .10.4.3.5 Coordination  Anionic Polymerization 272 .10.4.4 Ionic  Copolymerization 274 .10.4.4.1 Peculiarities of Ionic  Copolymerization 274 .10.4.5 Ring–opening Polymerization 275 .References   27 .11 Synthesis of Polymers With Special Molecular Arrangements 279 (in bold) .11.1 Block and Graft Copolymers 279 .11.1.1 Block Copolymers 279 .11.1.1.1 Synthesis of Block Copolymers via  Condensation 279  .11.1.1.2 Synthesis of Block Copolymers via Radical Polymerization    280  .11.1.1.3 Synthesis of Block Copolymers via  Anionic   Polymerization   281  .11.2 Graft Copolymers 282 .11.3 Stereoregular Polymers    283  .11.3.1 Constitutional and Con gurational Isomerism  283  .11.3.2 Geometrical Isomerism    283  .11.3.3 Stereoisomerism 283 .11.3.4 Energy of Regular Polymer Chain  Growth 285 .11.3.5 Properties of Stereoregular Polymers    286  . References 287 .12 Chemical Reactions with Macromolecules. New Non–traditional   Methods  for  Polymer Synthesis 289 .12.1 Introduction 289 .12.2 Polymer–analogous Reactions    289  .12.2.1 Solvent Effect   290  .12.2.2 Effect of Neighboring Functional Groups    290  .12.2.3 Effect of Molecular and Supermolecular   Structure 291 .12.2.4 Examples of  Important  Polymer–analogous Reactions 291 .12.3 Polymer Destruction 293 .12.3.1 Mechanical  Destruction 294 .12.3.2 Radio–chemical  Destruction 294 .12.3.3 Thermal Destruction 295 .12.4 New Non–traditional Methods for Polymer Synthesis 296  .12.4.1 Introduction 296 .12.4.2 Atom  Transfer  Radical Polymerization 297 .12.4.3 Reversible Addition/Fragmentation Chain Transfer 298 .12.4.4 Polymer Synthesis by Click Chemistry    301  .References and Sources used for Part Three     304  .Part Four   Polymer Materials and Their Processing   307 .13 Polymer Materials and Their Processing      309 .13.1 Introduction 309 .13.2 Environmental  Impact Assessment 312 .13.2.1 Ecological Footprint   312 .13.2.2 Life Cycle Assessment 312 .13.2.3 Polymer Processing   313 .13.3 Fibers 313 .13.3.1 Melt Spinning   313 .13.3.2 Gel Spinning   314 .13.4 Elastomers 315 .13.4.1 Vulcanized Rubber   315 .13.4.2 Thermoplastic Elastomers    316 .13.5 Polymer Blends 321 .13.6 Films and Sheets 322 .13.6.1 Solution Casting 322 .13.6.2 Melt Pressing of Film 323 .13.6.3 Sinter Fabrication of Film 324 .13.6.4 Melt Extrusion of Films 324 .13.6.5 Bubble Blown Films 324 .13.6.6 Films by Calendaring 325 .13.7 Polymer Composites 325 .13.7.1 Types of Composites 327 .13.7.2 Long Fiber Composites: Some Theoretical Considerations 328 .13.7.3 Matrices 330 .13.7.4 Long Fiber Composites: Applications 332 .13.8 Nanomaterials  and  Polymer Nanocomposites 334 .13.9 Basic Problems in Polymer Science and Technology: Environmental Impact, Interfacial Adhesion Quality, Aspect  Ratio 337 .13.10 Polymer Polymer and Single Polymer Composites: De nitions, Nomenclature,  Advantages,  and Disadvantages 338 .13.11 Processing  of  Fiber–reinforced Composites 341 .13.12 Fabrication of Shaped Objects from  Polymers 342 .13.12.1 Casting 342 .13.12.2 Compression  Molding 343 .13.12.3 Injection Molding 344 .13.12.4 Rotational Molding 344 .13.12.5 Bag Molding 344 .13.12.6 Tube Fabrication 345 .References   345 .14 Polymers for Special Applications 347 .14.1 Electrically Conductive Polymers 347 .14.1.1 Ionic Conduction in Solid  Polymers 348 .14.1.2 Proton Conductors 349 .14.1.3 Electronically  Conducting Polymers 350 .14.1.4 Optical and Electro–optical  Devices 351 .14.1.5 Linear Optical Materials 351 .14.1.6 Non–linear  Optical Polymers 352 .14.1.7 Photovoltaic Cells 352 .14.2 High–performance   Thermoplastics 353 .14.3 Polymers for Hydrogen Storage 355 .14.4 Smart Materials 357 .14.4.1 Introduction 357 .14.4.2 Self–healing Polymers 358 .14.4.3 Shape–memory Polymers 360 .14.5 Uses of Polymers in Biomedicine 362 .14.5.1 Cardiovascular Applications 363 .14.5.2 Stents and Stenting 365 .14.5.3 Tissue Adhesives and Arti cial  Skin 367 .14.5.4 Bones, Joints, and Teeth 368 .14.5.5 Contact Lenses and Intraocular Lenses 368 .14.6 Tissue Engineering 369 .14.7 Controlled Release of Drugs 372 .References and Sources for Part Four 373 .Index 375

  • ISBN: 978-3-527-34131-3
  • Editorial: Wiley VCH
  • Encuadernacion: Cartoné
  • Páginas: 408
  • Fecha Publicación: 24/10/2017
  • Nº Volúmenes: 1
  • Idioma: Inglés