Functional Imaging by Controlled Nonlinear Optical Phenomena

Functional Imaging by Controlled Nonlinear Optical Phenomena

Itoh, Kazuyoshi
Isobe, Keisuke
Watanabe, Wataru

104,21 €(IVA inc.)

Ultrafast lasers allow high–precision imaging and manipulation for biological and medical applications. Nonlinear optical microscopy has provided researchers with unique possibilities of three–dimensional imaging of biological cells and tissues. Nonlinear optical imaging technique is a rapidly emerging research area with widespread fundamental research and clinical applications. Nonlinear optical imaging allows both structural and functional imaging with cellular level resolution imaging in biological systems. The introduction of endogenous or exogenous probes can selectively enhance contrast for molecular targets in a living cell as well as supply functional information on processes. With the aim to control nonlinear optical processes and to obtain functional images, nonlinear optical processes can be controlled by photo–controlled probes and/or parameters of ultrafast laser pulses, such as time, space, polarization, and phase. This book gives an overview of the nonlinear optical process by ultrafast laser pulses and explains how the basics of nonlinear optical microscopy led to the most advanced techniques of photo–controlled nonlinear optical microscopy. INDICE: LIST OF FIGURES ix LIST OF TABLES xxi PREFACE xxiii ACKNOWLEDGMENTS xxv ACRONYMS xxvii 1 ULTRAFAST OPTICS FOR NONLINEAR OPTICAL MICROSCOPY 1 1.1 Nonlinear Optical Phenomena  1 1.1.1 Introduction to Nonlinear Optics  1 1.1.2 Second–Order Nonlinear Optical Phenomena  12 1.1.3 Third–Order Nonlinear Optical Phenomena  25 1.2 Nonlinear Ionization  54 1.2.1 Nonlinear Optical Ionization  54 1.2.2 Avalanche Ionization  55 1.2.3 PhotodisruptionOptical Breakdown  56 1.3 Light Source  58 1.3.1 Ultrashort Laser Pulse  58 1.3.2 Dispersion Management and Pulse Shaping  60 1.3.3 Pulse Characterization in Nonlinear Optical Microscope  72 1.3.4 Wavefront Compensation  78 References  80 2 BASIC MICROSCOPIC TECHNIQUE 87 2.1 Basic Architecture of a Laser Scanning Microscope  87 2.1.1 Scanning Methods  89 2.1.2 Signal Detection  90 2.2 Fluorescence Technique  91 2.2.1 Various Fluorescent Molecules and Multi–Color Fluorescence Imaging  91 2.2.2 Fluorescence Resonance Energy Transfer Imaging  101 2.2.3 Fluorescence Lifetime–Resolved Imaging  107 2.2.4 Fluorescence Recovery after Photobleaching Imaging  116 2.2.5 Fluorescence Correlation Spectroscopy  121 References  130 3 NONLINEAR OPTICAL SPECTROSCOPY (NLOS) 145 3.1 Laser–Wavelength Scanning Method  145 3.2 Multiplex Spectroscopy  149 3.2.1 Principle of Multiplex Nonlinear Optical Spectroscopy  150 3.2.2 Experimental Setup for Multiplex–NLOS  157 3.2.3 Measurement of Spectroscopic Information by Multiplex–NLOS  157 3.3 Fourier–Transform Spectroscopy  158 3.3.1 Principle of FT–NLOS  160 3.3.2 Experimental Setup for FT–NLOS  167 3.3.3 Measurement of Broadband Excitation Spectra by FT–NLOS  167 References  169 4 NONLINEAR OPTICAL MICROSCOPY 173 4.1 Introduction to Nonlinear Optical Microscopy  173 4.1.1 Various Nonlinear Optical Microscopies  173 4.1.2 Basic Architecture of a Nonlinear Optical Microscope  174 4.1.3 Spatial Resolution  176 4.2 Fluorescence Imaging  176 4.2.1 Basic Two–Photon Excited Fluorescence (TPEF) Microscopy  176 4.2.2 Application of TPEF Microscopy  184 4.2.3 High–Speed Imaging Using TPEF Microscopy  190 4.3 Electronic Resonance Imaging  204 4.3.1 Stimulated Parametric Emission Microscopy  204 4.3.2 Two–Photon Absorption Microscopy  211 4.4 Vibrational Imaging  214 4.4.1 Coherent Anti–Stokes Raman Scattering Microscopy  214 4.4.2 Stimulated Raman Scattering Microscopy  230 4.5 Second–Harmonic Generation Imaging  234 4.6 Refractive Index Imaging  244 4.6.1 Third–Harmonic Generation Microscopy  244 4.6.2 Nonresonant Four–Wave Mixing Microscopy  249 References  252 5 FUNCTIONAL IMAGING BASED ON MOLECULAR CONTROL 267 5.1 Localized Optical Marking and Tracking Using Photomodulatable Fluorescent Molecules  267 5.1.1 Photomodulatable Fluorescent Molecules  268 5.1.2 Imaging with Localized Optical Manipulation of Photosensitive Molecules  275 5.2 Multifarious Control of Multiphoton Excitation by Pulse–Shaping Technique  279 5.2.1 Control of Two–Photon Fluorescence in Multi–Labeled Sample  279 5.2.2 Control of Vibrational Mode Excitation by a Single Broadband Pulse  289 5.3 Super–Resolution Imaging Utilizing Nonlinear Response  298 5.3.1 Stimulated Depletion Emission Microscopy  299 5.3.2 Saturated Excitation Microscopy  303 5.3.3 Saturated Structured Illumination Microscopy  307 5.3.4 Single–Molecule Localization Microscopy  310 References  312 6 ULTRAFAST LASER SURGERY 327 6.1 Laser Cell Nanosurgery  327 6.1.1 Femtosecond Laser Surgery  327 6.1.2 Plasmonic–Enhanced Nanosurgery  335 6.2 Photodisruption and Photo–Stimulation  335 6.2.1 Photodisruption of Tissues  335 6.2.2 Laser–Induced Stimulation  336 References  336 INDEX 343  

  • ISBN: 978-1-118-09144-9
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 368
  • Fecha Publicación: 29/11/2013
  • Nº Volúmenes: 1
  • Idioma: Inglés