
Nanomaterials: Biomedical, Environmental and Engineerng Applications
Kanchi, Suvardhan
Ahmed, Shakeel
Sabela, Myalowenkosi I.
Hussain, Chaudhery Mustansar
INDICE: Contents .Preface xiii .Part I: Nanomaterials: Synthesis and Characterization 1 .1 Synthesis, Characterization and General Properties of Carbon Nanotubes 3Falah H. Hussein, Firas H. Abdulrazzak, and Ayad F. Alkaim .1.1 Introduction 4 .1.2 The History of Carbon Nanotubes 5 .1.3 Graphene 7 .1.4 Graphite 10 .1.5 Fullerene 11 .1.6 Rehybridization 11 .1.7 Structure of CNTs 13 .1.8 Classification of Carbon Nanotubes 13 .1.8.1 Classification by Chirality 14 .1.8.2 Classification by Conductivity 15 .1.8.3 Classification by Layers 15 .1.9 Crystal Structures of Carbon Nanotubes 15 .1.10 Synthesis Methods 17 .1.10.1 Arc–Discharge 17 .1.10.2 Laser Ablation 18 .1.10.3 Flame Methods 19 .1.10.4 Chemical Vapor Deposition 20 .1.11 The Purification Process of Carbon Nanotubes 22 .1.12 Mechanism of Growth CNTs 23 .1.12.1 The Model for Carbon Filament Growth 23 .1.12.1.1 Tip Growth Model 24 .1.12.1.2 Base Growth Model 24 .1.12.2 Free Radical Condensate 25 .1.12.3 Yarmulke Mechanism 26 .1.13 Properties of Carbon Nanotubes 27 .1.13.1 Electronic Properties of Carbon Nanotubes 27 .1.13.2 Mechanical Properties of Carbon Nanotubes 28 .1.14 Applications of Carbon Nanotubes 28 .1.14.1 Fuel Cells 29 .1.14.2 Solar Cells 30 .1.14.3 Dye–sensitized Solar Cells 32 .1.15 Characterization of CNTs 32 .1.15.1 Raman Spectroscopy 32 .1.15.1.1 G band 36 .1.15.1.2 D Band 37 .1.15.1.3 Radial Breathing Mode 37 .1.15.2 X–Ray Diffraction 38 .1.15.3 X–ray Photoelectron Spectroscopy 39 .1.15.4 Thermo Gravimetric Analysis 41 .1.15.5 Transmission Electron Microscopy 43 .1.15.6 Scanning Electronic Microscopy 45 .1.15.7 Scanning Helium Ion Microscopy 46 .1.16 Composite of CNTs/Semiconductors 47 .1.17 Recent Updates on Synthesis of CNTs 49 .References 50 .2 Synthesis and Characterization of Phosphorene: A Novel 2D Material 61Sima Umrao, Narsingh R. Nirala, Gaurav Khandelwal, and Vinod Kumar .2.1 Introduction 61 .2.1.1 History of Phosphorene 62 .2.1.2 Crystal Structure 63 .2.1.3 Band Structure 65 .2.2 Synthesis of Phosphorene 65 .2.2.1 Mechanical Exfoliation 65 .2.2.2 Plasma–assisted Method 66 .2.2.3 Liquid–Phase Exfoliation 68 .2.2.4 Chemical Vapor Deposition 70 .2.3 Characterization of Phosphorene 70 .2.3.1 Structural Charcterizations 71 .2.3.2 Spectroscopic Characterizations 73 .2.3.3 Optical Band Gap Characterization 76 .2.4 Environment Stability Issue of Phosphorene 80 .2.5 Summary and Future Prospective 82 .References 83 .3 Graphene for Advanced Organic PhotovoltaicsTanvir Arfin and Shoeb Athar .3.1 Introduction 93 .3.2 History of Graphene 94 .3.3 Structure of Graphene 94 .3.4 Graphene Family Nanomaterials 94 .3.5 Properties of Graphene 95 .3.5.1 Physicochemical Properties 95 .3.5.2 Thermal and Electrical Properties 96 .3.5.3 Optical Properties 96 .3.5.4 Mechanical Properties 96 .3.5.5 Biological Properties 96 .3.6 Graphene for Advanced Organic Photovoltaics 96 .3.6.2 Acceptor Material in OPVs 98 .3.6.3 Interfacial Layer in OPVs 100 .3.7 Conclusion 102 .References 102 .4 Synthesis of Carbon Nanotubes by Chemical Vapor DepositionFalah H. Hussein and Firas H. Abdulrazzak .4.1 Introduction 105 .4.2 Synthesis Methods 107 .4.2.1 Arc–Discharge 108 .4.2.2 Laser Ablation 109 .4.2.3 Flame Methods 109 .4.2.4 Chemical Vapor Deposition 110 .4.3 The Parameters of CVD 112 .4.3.1 CNT Precursors 112 .4.3.2 Type of Catalyst 114 .4.3.3 Effect of Temperature 115 .3.4.4 Gas Flow Rates 116 .4.4 Deformations and Defects in Carbon Nanotubes 118 .4.4.1 Deformations in Carbon Nanotubes 118 .4.4.2 Defects in Carbon Nanotubes 120 .4.5 Characterization of CNTs 123 .4.6 Conclusion 126 .References 126 .Part II: Environmental Applications 133 .5 A Review of Pharmaceutical Wastewater Treatment with Nanostructured Titanium Dioxide 135Lavanya Madhura and Shalini Singh .5.1 Introduction 135 .5.2 Heterogeneous Photocatalysis 137 .5.3 Pharmaceuticals in the Environment 137 .5.4 Role of TiO2 in Photocatalysis for Degradation, Mineralization, and Transformation Process of Pharmaceuticals 138 .5.5 Applications 139 .5.6 Conclusion 146 .Acknowledgment 147 .References 147 .6 Nanosilica Particles in Food: A Case of Synthetic Amorphous Silica 153Rookmoney Thakur and Shalini Singh .6.1 Introduction 153 .6.1.1 The Different Forms of Silica 155 .6.1.2 Synthetic Amorphous Silica 156 .6.1.3 Physical and Chemical Properties of SAS 157 .6.1.4 Silica Applications in the Food Industry 157 .6.1.5 Toxicity 158 .6.1.6 Conclusion 159 .References 160 .7 Bio–sensing Performance of Magnetite Nanocomposite for Biomedical Applications 165Rajasekhar Chokkareddy, Natesh Kumar Bhajanthri, Bakusele Kabane, and Gan G. Redhi .7.1 Introduction 166 .7.1.1 Hematite 166 .7.1.2 Maghemite 168 .7.1.3 Magnetite 169 .7.1.4 Magnetism and Magnetic Materials 170 .7.1.5 Types of Magnetic Substances 170 .7.1.5.1 Paramagnetic Substances 171 .7.1.5.2 Diamagnetic Substances 171 .7.1.5.3 Ferri Magnetic Substances 172 .7.1.5.4 Ferro Magnetic Substances 172 .7.1.5.5 Anti–ferro Magnetic Substances 173 .7.1.6 Shape, Size, and Magnetic Properties 177 .7.1.7 Synthesis Methods of Magnetic Nanoparticles 178 .7.1.8 Advantages of Magnetic Nanomaterials 178 .7.1.9 Surface Modifications of Magnetic Nanoparticles 181 .7.2 Potential Applications of Magnetic Nanoparticles 181 .7.2.1 Magnetic Separation 182 .7.2.2 Magnetic Resonance Image 184 .7.2.3 Targeted Drug Delivery Systems 186 .7.2.4 Magnetic Hyperthermia 188 .7.2.5 Gene Delivery 190 .7.3 Conclusion 191 .References 192 .8 The Importance of Screening Information DATA Set in Nanotechnology 197Khan Ameera Bibi, Suruj Gitesh, and Shalini Singh .8.1 Introduction 198 .8.2 Review of the Literature 201 .8.2.1 Carbon Nanotubes 201 .8.2.2 Nanosilver 203 .8.2.3 Carbon Nanotubes vs. Asbestos 203 .8.2.4 Density 205 .8.2.5 Risk Assessment 205 .8.2.6 Using SIDS as a Risk Assessment Tool for ENPs 206 .8.3 Behavioral Patterns of Engineered Nanoparticles 206 .8.3.1 Products Containing Nanosilver 207 .8.3.2 Toxicity Effects of Nanosilver on Humans 208 .8.3.3 Toxicity Effects on the Environment 210 .8.4 Conclusions and Recommendations 213 .References 213 .9 Nanomaterials for Biohydrogen Production 217Periyasamy Sivagurunathan, Abudukeremu Kadier, Ackmez Mudhoo, Gopalakrishnan Kumar, Kuppam Chandrasekhar, Takuro Kobayashi, and Kaiqin Xu .9.1 Introduction 218 .9.2 Major Biohydrogen Production Pathways 219 .9.2.1 Biophotolysis 219 .9.2.2 Photo–fermentation 220 .9.2.3 Dark fermentation 220 .9.2.4 Microbial Electrolysis Cell 221 .9.3 Nanaparticle Effects on Biohydrogen Production 222 .9.3.1 Dark Fermentative Hydrogen Production 222 .9.3.2 Photo Fermentative Hydrogen Production 223 .9.3.3 Photocatalytic Hydrogen (H2) Production 226 .9.3.4 MEC–based hydrogen production 226 .9.4 Biohydrogen Producing Associated with Immobilized Enzymes (Cellulases and Hydrogenases) 227 .9.5 Outlook and Concluding Notes 229 .Acknowledgment 232 .References 232 .10 A Framework for Using Nanotechnology in Military Gear 239Hlophe Nkosingiphile.Siphesihle, Mbatha Precious Hlengiwe, and Shalini Singh .10.1 Introduction 240 .10.2 Literature Review 241 .10.2.2 Ballistic Protection Properties 241 .10.2.3 Biological and Chemical Protection Properties 242 .10.2.4 Health Monitoring Sensing Properties 242 .10.2.5 UV Protection Properties 243 .10.2.6 Ethics, Safety, and the Enhancement of Soldier s Performance 243 .10.2.7 Risks in Engineered Nanomaterials 244 .10.2.8 Control of Risks 245 .10.3 Application of Nanotechnology in the Military 246 .10.3.1 Protective Properties 246 .10.3.1.2 Biological and Chemical Hazard Protection 247 .10.3.1.3 Injury Protection 248 .10.3.2 Medical properties 248 .10.3.2.2 Tissue Repair 248 .10.3.3 Ethics, Safety, and the Enhancement of Soldier s Performance 248 .10.3.4 Key Transmissions of ENM Exposure 249 .10.4 Conclusions 251 .10.4.1 Recommendations 252 .References 253 .Part III: Biological Applications 257 .11 Plasmonic Nanopores: A New Approach Toward Single Molecule Detection 259Gaurav Khandelwal, Sima Umrao, Narsingh R. Nirala, Sadhana S Sagar, and Vinod Kumar .11.1 Introduction 260 .11.1.1 Biological Nanopores 261 .11.1.2 Solid State Nanopores 261 .11.1.3 Plasmoinc Nanopore 262 .11.2 Sensing Principles of Plasmonic Nanopore 264 .11.2.1 Fabrication of Plasmonic Nanopores 265 .11.2.1.1 Materials of Choice 265 .11.2.1.2 Lithography 266 .11.2.1.3 Multilayers 267 .11.3 Optical Properties 267 .11.4 Improving Performance 268 .11.4.1 Use of a New Kind of Structures 269 .11.4.2 Use of New Spectroscopy Techniques 269 .11.5 Surface Patterning 270 .11.6 Applications Next–Generation DNA Sequencing and Beyond 271 .11.7 Some Other Sensing Examples 275 .11.8 Future Perspectives 277 .References 278 .12 Catalytically Active Enzyme Mimetic Nanomaterials and Their Role in Biosensing 285Narsingh R. Nirala, Sima Umrao, Gaurav Khandelwal, and Vinod Kumar .12.1 Introduction 286 .12.2 Different Types of Catalytically Active Enzyme Mimetic Nanomaterials 286 .12.2.1 Carbon Derivative–based Enzyme Mimetic Nanomaterials 287 .12.2.1.1 Carbon Nanotubes 287 .12.2.1.2 Graphene Oxide 288 .12.2.1.3 Graphene Quantum Dots 289 .12.2.1.4 Graphene–Hemin Nanocomposites 290 .12.2.2 Nobel Metal Nanoparticle–based Enzyme Mimetic Nanomaterials 290 .12.2.2.1 Gold Nanoparticles 290 .12.2.3 Metal Oxide Nanoparticle–based Enzyme Mimetic Nanomaterials 292 .12.3 Applications of Catalytically Active Nanomaterials in Biosensing 292 .12.3.1 Biosensors 292 .12.3.1.1 H2O2 Detection 293 .12.3.1.2 Glucose Detection Peroxidase–like Nanozymes Coupled 294 .12.3.1.3 Immunoassays 294 .References 296
- ISBN: 978-1-119-37026-0
- Editorial: John Wiley & Sons
- Encuadernacion: Cartoné
- Páginas: 326
- Fecha Publicación: 23/07/2018
- Nº Volúmenes: 1
- Idioma: Inglés