Nonlinear Theory of Elastic Plates provides the theoretical materials necessary for the three plate models-Cosserat plates, Reissner-Mindlin plates and Kirchhoff-Love plates- in the context of finite elastic deformations. One separate chapter is devoted to the linearized theory of Kirchhoff-Love plates, which allows for the study of vibrations of a pre-stressed plate and the static buckling of a plate. All mathematical results in the tensor theory in curvilinear coordinates necessary to investigate the plate theory in finite deformations are provided, making this a self-contained resource. Presents the tricky process of linearization, which is rarely dealt with, but explained in detail in a separate chapterOrganized in a mathematical style, with definitions, hypotheses, theorems and proofs clearly statedPresents every theorem with its accompanying hypotheses, enabling the reader to quickly recognize the conditions of validity in results INDICE: 1. Fundamentals of tensor theory2. Initial position of a plate3. Theory of Cosserat plates4. Theory of Reissner-Mindlin plates 5. Theory of Kirchhoff-Love plates 6. Constitutive laws for plates7. Linearized theory of Kirchhoff-Love plates
- ISBN: 978-1-78548-227-4
- Editorial: ISTE Press - Elsevier
- Encuadernacion: Cartoné
- Páginas: 212
- Fecha Publicación: 01/06/2017
- Nº Volúmenes: 1
- Idioma: Inglés