Thermoelectrics: Design and Materials

Thermoelectrics: Design and Materials

Lee, HoSung

122,93 €(IVA inc.)

Thermoelectrics: Design and Materials HoSung Lee, Western Michigan University, USA   A comprehensive guide to the basic principles of thermoelectrics   Thermoelectrics plays an important role in energy conversion and electronic temperature control. The book comprehensively covers the basic physical principles of thermoelectrics as well as recent developments and design strategies of materials and devices. The book is divided into two sections: the first section is concerned with design and begins with an introduction to the fast developing and multidisciplinary field of thermoelectrics. This section also covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials, and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures.   Key features: Provides an introduction to a fast developing and interdisciplinary field. Includes detailed, fundamental theories. Offers a platform for advanced study.   Thermoelectrics: Design and Materials is a comprehensive reference ideal for engineering students, as well as researchers and practitioners working in thermodynamics.   Cover designed by Yujin Lee INDICE: Preface xiii .1 Introduction 1 .1.1 Introduction 1 .1.2 Thermoelectric Effect 3 .1.2.1 Seebeck Effect 3 .1.2.2 Peltier Effect 3 .1.2.3 Thomson Effect 4 .1.2.4 Thomson (or Kelvin) Relationships 4 .1.3 The Figure of Merit 4 .1.3.1 New–Generation Thermoelectrics 5 .Problems 7 .References 7 .2 Thermoelectric Generators 8 .2.1 Ideal Equations 8 .2.2 Performance Parameters of a Thermoelectric Module 11 .2.3 Maximum Parameters for a Thermoelectric Module 12 .2.4 Normalized Parameters 13 .Example 2.1 Exhaust Waste Heat Recovery 15 .2.5 Effective Material Properties 17 .2.6 Comparison of Calculations with a Commercial Product 18 .Problems 19 .Computer Assignment 21 .References 22 .3 Thermoelectric Coolers 23 .3.1 Ideal Equations 23 .3.2 Maximum Parameters 26 .3.3 Normalized Parameters 27 .Example 3.1 Thermoelectric Air Conditioner 29 .3.4 Effective Material Properties 33 .3.4.1 Comparison of Calculations with a Commercial Product 34 .Problems 36 .Reference 37 .4 Optimal Design 38 .4.1 Introduction 38 .4.2 Optimal Design for Thermoelectric Generators 38 .Example 4.1 Exhaust Thermoelectric Generators 46 .4.3 Optimal Design of Thermoelectric Coolers 49 .Example 4.2 Automotive Thermoelectric Air Conditioner 57 .Problems 61 .References 63 .5 Thomson Effect, Exact Solution, and Compatibility Factor 64 .5.1 Thermodynamics of Thomson Effect 64 .5.2 Exact Solutions 68 .5.2.1 Equations for the Exact Solutions and the Ideal Equation 68 .5.2.2 Thermoelectric Generator 70 .5.2.3 Thermoelectric Coolers 71 .5.3 Compatibility Factor 71 .5.4 Thomson Effects 79 .5.4.1 Formulation of Basic Equations 79 .5.4.2 Numeric Solutions of Thomson Effect 83 .5.4.3 Comparison between Thomson Effect and Ideal Equation 85 .Problems 87 .Projects 88 .References 88 .6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 89 .6.1 Modeling and Validation 89 .6.2 Micro and Macro Thermoelectric Coolers 92 .6.3 Micro and Macro Thermoelectric Generators 94 .Problems 97 .Computer Assignment 97 .References 98 .7 Modeling of Thermoelectric Generators and Coolers With Heat Sinks 99 .7.1 Modeling of Thermoelectric Generators With Heat Sinks 99 .7.2 Plate Fin Heat Sinks 108 .7.3 Modeling of Thermoelectric Coolers With Heat Sinks 111 .Problems 119 .References 119 .8 Applications 120 .8.1 Exhaust Waste Heat Recovery 120 .8.1.1 Recent Studies 120 .8.1.2 Modeling of Module Tests 122 .8.1.3 Modeling of a TEG 126 .8.1.4 New Design of a TEG 133 .8.2 Solar Thermoelectric Generators 138 .8.2.1 Recent Studies 138 .8.2.2 Modeling of a STEG 138 .8.2.3 Optimal Design of a STEG (Dimensional Analysis) 144 .8.2.4 New Design of a STEG 146 .8.3 Automotive Thermoelectric Air Conditioner 149 .8.3.1 Recent Studies 149 .8.3.2 Modeling of an Air–to–Air TEAC 150 .8.3.3 Optimal Design of a TEAC 157 .8.3.4 New Design of a TEAC 160 .Problems 162 .References 163 .9 Crystal Structure 164 .9.1 Atomic Mass 164 .9.1.1 Avogadro s Number 164 .Example 9.1 Mass of One Atom 164 .9.2 Unit Cells of a Crystal 165 .9.2.1 Bravais Lattices 166 .Example 9.2 Lattice Constant of Gold 169 .9.3 Crystal Planes 170 .Example 9.3 Indices of a Plane 171 .Problems 171 .10 Physics of Electrons 172 .10.1 Quantum Mechanics 172 .10.1.1 Electromagnetic Wave 172 .10.1.2 Atomic Structure 174 .10.1.3 Bohr s Model 174 .10.1.4 Line Spectra 176 .10.1.5 De Broglie Wave 177 .10.1.6 Heisenberg Uncertainty Principle 178 .10.1.7 Schrödinger Equation 178 .10.1.8 A Particle in a One–Dimensional Box 179 .10.1.9 Quantum Numbers 181 .10.1.10 Electron Configurations 183 .Example 10.1 Electronic Configuration of a Silicon Atom 184 .10.2 Band Theory and Doping 185 .10.2.1 Covalent Bonding 185 .10.2.2 Energy Band 186 .10.2.3 Pseudo–Potential Well 186 .10.2.4 Doping, Donors, and Acceptors 187 .Problems 188 .References 188 .11 Density of States, Fermi Energy, and Energy Bands 189 .11.1 Current and Energy Transport 189 .11.2 Electron Density of States 190 .11.2.1 Dispersion Relation 190 .11.2.2 Effective Mass 190 .11.2.3 Density of States 191 .11.3 Fermi–Dirac Distribution 193 .11.4 Electron Concentration 194 .11.5 Fermi Energy in Metals 195 .Example 11.1 Fermi Energy in Gold 196 .11.6 Fermi Energy in Semiconductors 197 .Example 11.2 Fermi Energy in Doped Semiconductors 198 .11.7 Energy Bands 199 .11.7.1 Multiple Bands 200 .11.7.2 Direct and Indirect Semiconductors 200 .11.7.3 Periodic Potential (Kronig–Penney Model) 201 .Problems 205 .References 205 .12 Thermoelectric Transport Properties for Electrons 206 .12.1 Boltzmann Transport Equation 206 .12.2 Simple Model of Metals 208 .12.2.1 Electric Current Density 208 .12.2.2 Electrical Conductivity 208 .Example 12.1 Electron Relaxation Time of Gold 210 .12.2.3 Seebeck Coefficient 210 .Example 12.2 Seebeck Coefficient of Gold 212 .12.2.4 Electronic Thermal Conductivity 212 .Example 12.3 Electronic Thermal Conductivity of Gold 213 .12.3 Power–Law Model for Metals and Semiconductors 213 .12.3.1 Equipartition Principle 214 .12.3.2 Parabolic Single–Band Model 215 .Example 12.4 Seebeck Coefficient of PbTe 217 .Example 12.5 Material Parameter 221 .12.4 Electron Relaxation Time 222 .12.4.1 Acoustic Phonon Scattering 222 .12.4.2 Polar Optical Phonon Scattering 222 .12.4.3 Ionized Impurity Scattering 223 .Example 12.6 Electron Mobility 223 .12.5 Multiband Effects 224 .12.6 Nonparabolicity 225 .Problems 228 .References 229 .13 Phonons 230 .13.1 Crystal Vibration 230 .13.1.1 One Atom in a Primitive Cell 230 .13.1.2 Two Atoms in a Unit Cell 232 .13.2 Specific Heat 234 .13.2.1 Internal Energy 234 .13.2.2 Debye Model 235 .Example 13.1 Atomic Size and Specific Heat 239 .13.3 Lattice Thermal Conductivity 241 .13.3.1 Klemens–Callaway Model 241 .13.3.2 Umklapp Processes 244 .13.3.3 Callaway Model 244 .13.3.4 Phonon Relaxation Times 245 .Example 13.2 Lattice Thermal Conductivity 247 .Problems 249 .References 250 .14 Low–Dimensional Nanostructures 251 .14.1 Low–Dimensional Systems 251 .14.1.1 Quantum Well (2D) 251 .Example 14.1 Energy Levels of a Quantum Well 255 .14.1.2 Quantum Wires (1D) 256 .14.1.3 Quantum Dots (0D) 258 .14.1.4 Thermoelectric Transport Properties of Quantum Wells 260 .14.1.5 Thermoelectric Transport Properties of Quantum Wires 261 .14.1.6 Proof–of–Principle Studies 263 .14.1.7 Size Effects of Quantum Well on Lattice Thermal Conductivity 264 .Problems 267 .References 267 .15 Generic Model of Bulk Silicon and Nanowires 268 .15.1 Electron Density of States for Bulk and Nanowires 268 .15.1.1 Density of States 268 .15.2 Carrier Concentrations for Two–band Model 269 .15.2.1 Bulk 269 .15.2.2 Nanowires 269 .15.2.3 Bipolar Effect and Fermi Energy 269 .15.3 Electron Transport Properties for Bulk and Nanowires 270 .15.3.1 Electrical Conductivity 270 .15.3.2 Seebeck Coefficient 270 .15.3.3 Electronic Thermal Conductivity 270 .15.4 Electron Scattering Mechanisms 271 .15.4.1 Acoustic–Phonon Scattering 271 .15.4.2 Ionized Impurity Scattering 272 .15.4.3 Polar Optical Phonon Scattering 272 .15.5 Lattice Thermal Conductivity 273 .15.6 Phonon Relaxation Time 273 .15.7 Input Data for Bulk Si and Nanowires 275 .15.8 Bulk Si 275 .15.8.1 Fermi Energy 275 .15.8.2 Electron Mobility 275 .15.8.3 Thermoelectric Transport Properties 275 .15.8.4 Dimensionless Figure of Merit 276 .15.9 Si Nanowires 276 .15.9.1 Electron Properties 276 .15.9.2 Phonon Properties for Si Nanowires 280 .Problems 282 .References 284 .16 Theoretical Model of Thermoelectric Transport Properties 286 .16.1 Introduction 286 .16.2 Theoretical Equatons 287 .16.2.1 Carrier Transport Properties 287 .16.2.2 Scattering Mechanisms for Electron Relaxation Times 290 .16.2.3 Lattice Thermal Conductivity 293 .16.2.4 Phonon Relaxation Times 293 .16.2.5 Phonon Density of States and Specific Heat 295 .16.2.6 Dimensionless Figure of Merit 295 .16.3 Results and Discussion 295 .16.3.1 Electron or Hole Scattering Mechanisms 295 .16.3.2 Transport Properties 299 .16.4 Summary 315 .Problems 316 .References 316 .Appendix A Physical Properties 323 .Appendix B Optimal Dimensionless Parameters for TEGs with ZT12=1 353 .Appendix C ANSYS TEG Tutorial 365 .Appendix D Periodic Table 376 .Appendix E Thermoelectric Properties 391 .Appendix F Fermi Integral 399 .Appendix G Hall Factor 402 .Appendix H Conversion Factors 405 .Index 409

  • ISBN: 978-1-118-84895-1
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 440
  • Fecha Publicación: 11/11/2016
  • Nº Volúmenes: 1
  • Idioma: Inglés