Unique within the field for being written in a tutorial style, this textbook adopts a step-by-step approach to the background needed for understanding a wide range of full-field optical measurement techniques in solid mechanics.This method familiarizes readers with the essentials of imaging and full-field optical measurement techniques, helping them to identify the appropriate techniques and in assessing measurement systems. In addition, readers learn the appropriate rules of thumb as a guide to better experimental performance from the applied techniques.Rather than presenting an exhaustive overview on the subject, each chapter provides a concise introduction to the concepts and principles, integrates solved problems within the text, summarizes the essence at the end, and includes unsolved problems. With its coverage of topics also relevant for industry, this text is aimed at graduate students, researchers, and engineers involved in non-destructive testing for acoustics, mechanics, medicine, diagnosis on artwork and construction, and civil engineering. INDICE: Preface XIIIList of Contributors XV1 Basic Optics 1Krishna Thyagarajan and Ajoy Ghatak1.1 Introduction 11.2 Light as an Electromagnetic Wave 11.2.1 Reflection and Refraction of Light Waves at a Dielectric Interface 71.3 Rays of Light 91.4 Imaging through Optical Systems 111.4.1 Thin Lens 131.4.2 Thick Lens 131.4.3 Principal Points of a Lens 141.5 Aberrations of Optical Systems 171.5.1 Monochromatic Aberrations 171.5.2 Spherical Aberration 171.5.3 Coma 181.5.4 Astigmatism and Curvature of Field 181.5.5 Distortion 181.6 Interference of Light 191.6.1 Young’s Double-Slit Arrangement 191.7 Coherence 251.8 Diffraction of Light 271.8.1 Resolution of Optical Instruments 301.9 Anisotropic Media 331.10 Jones Calculus 351.11 Lasers 381.11.1 Principle 391.11.2 CoherenceProperties of the Laser 411.12 Optical Fibers 421.13 Summary 442 Electronic Image Sensing and Processing 47Thomas Baechler2.1 Introduction 472.2 Image Formation 492.2.1 Geometrical Optics and Imaging Concepts 502.2.2 Optical Distortion and Other Limiting Factors 542.3 Image Sensing: From Photons to Electrons 562.3.1 Image Formation Related to Image Sensing 582.3.2 Operating Modes of State-of-the-Art Electronic Image Sensors 622.3.3 Noise Sources in State-of-the-Art Electronic Image Sensors 642.3.4 From Electrons to Digital Image Data 672.4Image Processing 702.4.1 Image Histograms 712.4.2 Linear Point Operations 732.4.3 Multi-image Operations for Noise Reduction 762.4.4 Morphological Image Operations 772.4.5 Introduction to Feature and Motion Detection 782.5 Conclusions 793 Phase Decoding and Reconstruction 83Jan Burke3.1 Introduction 833.2 Basic Concepts 853.2.1 Deriving a Generic Phase-Shifting Formula 913.2.2 Phase Shifting with Three Steps 943.2.3 General N-Step Method 963.2.4 Symmetrical N + 1Step Formulae 973.2.5 Extended Averaging 993.2.6 Summary 1003.3 Methods of Phase Shifting 1013.3.1 Temporal Phase Shifting (TPS) 1023.3.2 Spatial Phase Shifting (SPS) 1073.3.3 Spatiotemporal Phase Shifting (STPS) 1123.4 Designing andAnalyzing Phase-Shift Methods with the Complex-Polynomial Method 1153.5 Sources and Removal of Errors 1243.5.1 Phase-Shift Miscalibration and Calibration 1243.5.2 Signal Nonlinearity and Harmonics 1263.5.3 Vibrations 1273.5.4 Random Noise 1273.5.5 Digitization Noise 1283.6 Phase Unwrapping 1293.6.1 Spatial Phase Unwrapping 1293.6.2 Temporal Phase Unwrapping 1333.6.3 Multiwavelength Unwrapping Techniques 1344 Experimental Stress Analysis An Overview 141Krishnamurthi Ramesh4.1 Introduction 1414.2 Concept of Stress and Strain 1414.3 Stress-Strain Relations 1464.4 Rudiments of a Tension Test 1474.5 Principal Stress andStrain 1484.6 Concept of Stress Concentration 1514.7 Birth of Fracture Mechanics 1534.8 Peculiarities of Experimental Approach 1544.9 Information Directly Obtainable from Various Experimental Techniques and Their Typical Applications1554.9.1 Photoelasticity 1554.9.2 Holography 1554.9.3 Grid Methods 1564.9.4 Geometric Moir´e 1574.9.5 Moir´e Interferometry 1574.9.6 Speckle Interferometry 1574.9.7 Digital Image Correlation 1584.9.8 Thermoelastic Stress Analysis 1594.9.9 Brittle Coating 1594.9.10 Strain Gauge 1594.9.11 Caustics 1604.9.12 Coherent Gradient Sensor 1614.10 Selection of an Experimental Technique 1614.11 Case Studies 1654.12 Experimental Study on Investigation of Random Failure of Chain Plates 1654.12.1 Possible Investigation Methodologies 1674.12.1.1 Analysis of Combined Stress Fields 1674.12.1.2 Decoupled Analysis of Assembly and Application Stress Fields 1684.12.2 Analysis of Assembly Stress due toInterference Fit between Bush and Inner Plate Using Transmission Photoelasticity 1684.12.3 Analysis of a Chain Plate and Bush Assembly Using Reflection Photoelasticity 1704.12.4 Stress Concentration Factor due to Applied Load 1714.13Comprehensive Experimental Study on a MEMS Pressure Sensor 1724.13.1 Microscale Speckle Interferometry and Shearography 1734.13.2 Deflection Measurement ofthe Pressure Sensor 1754.14 Conclusions 178Acknowledgements 1795 Digital Image Correlation 183Fran¸cois Hild and St´ephane Roux5.1 Introduction1835.2 Correlation Principles 1855.2.1 Determination of the Optical Flow 1855.2.2 Local DIC 1875.2.3 Global DIC 1885.2.4 Gray-Level Interpolation 1895.2.5 Relaxation of the Gray Level Conservation 1915.3 2-D Digital Image Correlation1995.3.1 Multiscale Analyses and Sequences of Pictures 1995.3.2 Local Approach 2005.3.2.1 FFT-Based DIC 2005.3.2.2 Measurement Uncertainties 2035.3.3 Global Approach 2085.3.3.1 General Formulation 2085.3.3.2 Q4-DIC: A Global ApproachUsing Q4 Elements 2095.4 3-D Digital Image Correlation 2165.4.1 Basic Principles 2165.4.2 Camera Calibration 2165.5 Digital Volume Correlation 2205.5.1 3-DExtensions of 2-D Approaches 2205.5.2 Resolution Analysis 2215.6 Summary 2255.7 Problems 2255.7.1 Mean Strain Extractor 2255.7.2 On the Use of a Global Approach When Analyzing Experiments on Beams 2265.7.3 Propagation of Uncertainties 2275.7.4 Measuring Displacement Fields with a Global Approach in the Presence of Cracks 2275.7.5 DIC Coupled with Finite-Element Analyses 2275.7.6 Application of Integrated DIC to a Brazilian Test 2286 Rough Surface Interferometry 229Kay Gastinger, Pierre Slangen, Pascal Picart, and Peter Somers6.1 Introduction 2296.2 Speckle 2306.2.1 Speckle in Monochromatic Light 2316.2.2 Speckle in Low-Coherent Light 2326.3 Electronic Speckle Pattern InterferometryESPI 2356.3.1 Introduction 2356.3.2 General Principle 2356.3.2.1 Interference Equation 2366.3.3 Evaluation 2376.3.3.1 Subtraction Mode 2376.3.3.2 Time Averaged Method 2376.3.4 Configuration 2396.3.4.1 Sensitivity Vectors 2406.3.5 Characteristics2406.3.5.1 Optimization of the Interference Signal 2406.3.6 Applications 2416.3.6.1 Compact Tension Notch Sample 2426.3.6.2 Tensile Test Sample 2446.4 Low-Coherence Speckle InterferometryLCSI 2466.4.1 Introduction 2466.4.2 General Principle 2476.4.2.1 Measurement Principle 2486.4.3 Interferometer Setup 2516.4.4 Evaluation 2526.4.4.1 Full-Field OCT Mode 2526.4.4.2 LCSI Mode 2546.4.5 Characteristics 2566.4.6 Applications 2576.4.6.1 NDT of Interfacial Instabilities of Adhesive Bonded Joints 2576.4.6.2 Membrane Deformation of a MEMS Pressure Sensor 2596.5 Speckle Pattern Shearing Interferometry Shearography 2626.5.1 Introduction 2626.5.2 General Principle 2626.5.3 Evaluation 2646.5.4 Configurations 2666.5.5 Characteristics 2686.5.6 Applications 2696.5.6.1 Excitation or Loading of the Object 2696.5.6.2 Static Applications 2706.5.6.3 Dynamic Applications 2746.6 Digital Holography 2786.6.1 Introduction 2786.6.2 General Principle 2796.6.3 Evaluation 2826.6.3.1 Discrete Fresnel Transform 2826.6.3.2 Convolution Algorithm 2826.6.4 Applications 2846.6.4.1 2D Deformation Measurement Using a Two-Color Digital Holographic Interferometer 2846.6.4.2 Real-Time Three-Sensitivity Measurement 2876.6.4.3 Vibration Analysis with Digital Fresnel Holography 2926.6.4.4 Time-Averaging Mode 2936.6.4.5 Stroboscopic Regime 2956.7 Summary 2987 Fringe Projection Profilometry 303Jan Buytaert and Joris Dirckx7.1 General Introduction 3037.1.1 Non-Optical Topography 3037.1.2 Optical Full-Field Profilometry 3047.1.2.1 Coherence-Based Techniques 3047.1.2.2 Triangulation-Based Techniques 3047.2 Grid Projection Profilometry: the Basics 3107.3 Fourier Transform Profilometry 3117.3.1 Theory 3117.3.2 Extensions 3147.3.3 Simulation Example 3167.4 Moir´e profilometry 3167.4.1 Shadow Versus ProjectionMoir´e 3167.4.2 Theory of Projection Moir´e 3217.4.2.1 Basic Principles 3217.4.2.2 Optical Geometric Interference 3227.4.2.3 Grid Noise Removal3237.4.2.4 Digital Geometric Interference 3257.4.2.5 Phase-Shifting Algorithms 3267.4.2.6 Nonlinearity and Fringe Plane Distance 3297.4.3 Practical Considerations 3317.4.4 Practical Implementation 3337.4.5 Demonstration Measurements 3377.5 Noncontinuous Surfaces 3377.6 Summary 3428 Thermoelastic Stress Analysis 345Janice M. Dulieu-Barton8.1 Introduction 3458.2 The Thermoelastic Effect 3458.3 Infrared Thermography 3488.4 Obtaining Thermoelastic Measurements from an Infrared System 3528.5 Temperature Dependence of Thermoelastic Response 3548.6 Derivation of the Thermoelastic Constant 3548.7 Nonadiabatic Conditions 3568.8 Paint Coatings 3588.9 Temperature Dependence of the Material Elastic Properties 3598.10 Progress, Applications, and Prospects 363Acknowledgements 3659 Photoelasticity 367Eann A. Patterson9.1 Introduction 3679.2 Polariscope Theory and Design 3699.3 Isoclinic and Isochromatic Fringes 3739.4 Fractional Fringe Analysis Using Compensation Techniques 3769.5 Digital Fringe Analysis 3799.6 Material and Load Selection 3839.7 Stress Analysis 3869.8 Conclusions 390Color Plates 393References 405Abbreviations and Notations 421Index 427
- ISBN: 978-3-527-41111-5
- Editorial: Wiley-VCH
- Encuadernacion: Rústica
- Páginas: 446
- Fecha Publicación: 13/06/2012
- Nº Volúmenes: 1
- Idioma: Inglés