Supramolecular chemistry

Supramolecular chemistry

Steed, Jonathan W.

58,77 €(IVA inc.)

This resource offers a comprehensive, modern overview of the field of supramolecular chemistry and its evolution into the nanoscale; the first integrated textbook written specifically for students. The second edition now contains five new chapters: ion pair receptors, molecular guests in solution, network solids, gels, and nanochemistry. It includes examples, worked problems, and references. All techniques are introduced from the supramolecular chemist's perspective. In addition, a Wiley supplementary website is available with Powerpoint slides for instructors, along with an author-maintained website of relevant URLs and additional information. INDICE: About the Authors. Preface to the First Edition. Preface to the Second Edition. Acknowledgements. 1 Concepts. 1.1 Defi nition and Development ofSupramolecular Chemistry. 1.2 Classifi cation of Supramolecular HostGuest Compounds. 1.3 Receptors, Coordination and the Lock and Key Analogy. 1.4 Binding Constants. 1.5 Cooperativity and the Chelate Effect. 1.6 Preorganisation and Complementarity. 1.7 Thermodynamic and Kinetic Selectivity, and Discrimination.1.8 Nature of Supramolecular Interactions. 1.9 Solvation and Hydrophobic Effects. 1.10 Supramolecular Concepts and Design. 2 The Supramolecular Chemistry of Life. 2.1 Biological Inspiration for Supramolecular Chemistry. 2.2 Alkali Metal Cations in Biochemistry. 2.3 Porphyrins and Tetrapyrrole Macrocycles. 2.4 Supramolecular Features of Plant Photosynthesis. 2.5 Uptake and Transport of Oxygen by Haemoglobin. 2.6 Enzymes and Coenzymes. 2.7 Neurotransmitters and Hormones. 2.8 Semiochemistry in the Natural World. 2.9 DNA. 2.10 Biochemical Self-Assembly. 3 Cation-Binding Hosts. 3.1 Introduction to Coordination Chemistry.3.2 The Crown Ethers. 3.3 The Lariat Ethers and Podands. 3.4 The Cryptands. 3.5 The Spherands. 3.6 Nomenclature of Cation-Binding Macrocycles. 3.7 Selectivity of Cation Complexation. 3.8 Solution Behaviour. 3.9 Synthesis: The Template Effect and High Dilution. 3.10 Soft Ligands for Soft Metal Ions. 3.11 ProtonBinding: The Simplest Cation. 3.12 Complexation of Organic Cations. 3.13 Alkalides and Electrides. 3.14 The Calixarenes. 3.15 Carbon Donor and À-acid Ligands. 3.16 The Siderophores. 4 Anion Binding. 4.1 Introduction. 4.2 Biological Anion Receptors. 4.3 Concepts in Anion Host Design. 4.4 From Cation Hosts to Anion Hosts a Simple Change in pH. 4.5 Guanidinium-Based Receptors. 4.6 Neutral Receptors. 4.7 Inert Metal-Containing Receptors. 4.8 Common Core Scaffolds. 5 Ion Pair Receptors. 5.1 Simultaneous Anion and Cation Binding. 5.2 Labile Complexes as Anion Hosts. 5.3 Receptors for Zwitterions. 6 Molecular Guests in Solution. 6.1 Molecular Hosts and Molecular Guests. 6.2 Intrinsic Curvature: Guest Binding by Cavitands. 6.3 Cyclodextrins. 6.4 Molecular Clefts and Tweezers. 6.5 Cyclophane Hosts. 6.6 Constructing a Solution Host from Clathrate-Forming Building Blocks: The Cryptophanes. 6.7 Covalent Cavities: Carcerands and Hemicarcerands. 7 Solid-State Inclusion Compounds. 7.1 Solid-State Host-Guest Compounds. 7.2 Clathrate Hydrates. 7.3 Urea and Thiourea Clathrates. 7.4 Other Channel Clathrates. 7.5 Hydroquinone, Phenol, Dianins Compound and the Hexahost Strategy. 7.6 Tri-o-thymotide. 7.7 Cyclotriveratrylene. 7.8 Inclusion Compounds of the Calixarenes. 7.9 Solid-Gas and Solid-Liquid Reactions in Molecular Crystals. 8 Crystal Engineering. 8.1 Concepts. 8.2 Crystal Nucleation and Growth. 8.3 Understanding Crystal Structures. 8.4 The Cambridge Structural Database. 8.5 Polymorphism. 8.6 Co-crystals. 8.7 Z > 1. 8.8 Crystal Structure Prediction.8.9 Hydrogen Bond Synthons Common and Exotic. 8.10 Aromatic Rings. 8.11 Halogen Bonding and Other Interactions. 8.12 Crystal Engineering of Diamondoid Arrays. 9 Network Solids. 9.1 What Are Network Solids? 9.2 Zeolites. 9.3 Layered Solids and Intercalates. 9.4 In the Beginning: Hoffman Inclusion Compounds and Werner Clathrates. 9.5 Coordination Polymers. 10 Self-Assembly. 10.1 Introduction. 10.2 Proteins and Foldamers: Single Molecule Self-Assembly. 10.3 Biochemical Self-Assembly. 10.4 Self-Assembly in Synthetic Systems: Kinetic and Thermodynamic Considerations. 10.6 Self-Assembly of Closed Complexes by Hydrogen Bonding. 10.7 Catenanes and Rotaxanes. 10.8 Helicates and Helical Assemblies. 10.9 Molecular Knots. 11 Molecular Devices. 11.1 Introduction. 11.2 Supramolecular Photochemistry. 11.3 Information and Signals: Semiochemistry and Sensing. 11.4 Molecule-Based Electronics. 11.5 Molecular Analogues of Mechanical Machines. 11.6 Nonlinear Optical Materials. 12 Biological Mimics and Supramolecular Catalysis. 12.1 Introduction. 12.2 Cyclodextrins as Enzyme Mimics. 12.3 Corands as ATPase Mimics. 12.4 Cation-Binding Hosts as Transacylase Mimics. 12.5 Metallobiosites. 12.6 Haem Analogues. 12.7 Vitamin B12 Models. 12.8 Ion Channel Mimics. 12.9 Supramolecular Catalysis. 13 Interfaces and Liquid Assemblies. 13.1 Order in Liquids. 13.2 Surfactants and Interfacial Ordering. 13.3 Liquid Crystals. 13.4 Ionic Liquids. 13.5 Liquid Clathrates. 14 Supramolecular Polymers, Gels and Fibres. 14.1 Introduction. 14.2 Dendrimers. 14.3 Covalent Polymers with Supramolecular Properties. 14.4 Self-Assembled Supramolecular Polymers. 14.5Polycatenanes and Polyrotaxanes. 14.6 Biological Self-Assembled Fibres and Layers. 14.7 Supramolecular Gels. 14.8 Polymeric Liquid Crystals. 15 Nanochemistry. 15.1 When Is Nano Really Nano? 15.2 Nanotechnology: The Top Down and Bottom Up Approaches. 15.3 Templated and Biomimetic Morphosynthesis. 15.4 NanoscalePhotonics. 15.5 Microfabrication, Nanofabrication and Soft Lithography. 15.6 Assembly and Manipulation on the Nanoscale. 15.7 Nanoparticles. 15.8 Endohedral Fullerenes, Nanotubes and Graphene. Index.

  • ISBN: 978-0-470-51234-0
  • Editorial: John Wiley & Sons
  • Encuadernacion: Rústica
  • Páginas: 990
  • Fecha Publicación: 09/01/2009
  • Nº Volúmenes: 1
  • Idioma: Inglés