
Handbook of Composites from Renewable Materials: Physico–Chemical and Mechanical Characterization
Thakur, Vijay Kumar
Thakur, Manju Kumari
Kessler, Michael R.
INDICE: Preface xxi .1 Structural and Biodegradation Characterization of Supramolecular PCL/HAp Nanocomposites for Application in Tissue Engineering 1Parvin Shokrollahi, Fateme Shokrolahi and Parinaz Hassanzadeh .1.1 Introduction 1 .1.2 Biomedical Applications of HAp 2 .1.3 Effect of HAp Particles on Biodegradation of PCL/HAp Composites 5 .1.4 Polycaprolactone 6 .1.5 Supramolecular Polymers and Supramolecular PCL 7 .1.6 Supramolecular Composites: PCL (UPy)2 /HApUPy Composites 8 .1.7 PCL(UPy)2 /HApUPy Nanocomposites 17 .References 20 .2 Different Characterization of Solid Biofillers–based Agricultural Waste Material 25Ahmad Mousa and Gert Heinrich .2.1 Introduction 25 .2.2 Examples on Agricultural Waste Materials 26 .2.3 The Main Polymorphs of Cellulose 30 .2.4 Modification Methods of Agro–biomass 31 .2.5 Properties of Thermoplastics Reinforced with Untreated Wood Fillers 34 .2.6 Production of Nanocellulose 34 .2.7 Processing of Wood Thermoplastic Composites 37 .2.8 Conclusion 38 .References 38 .3 Poly (ethylene–terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications 43A.S. Fotso Talla, F. Erchiqui and J.S.Y. D Pagé .3.1 General Introduction to Biocomposite Materials 43 .3.2 PET Hemp Fiber Composites 45 .3.3 Methods of Elaboration and Characterization of PET Hemp Fiber Composites 48 .3.4 Properties of PET Hemp Fiber Composites 50 .3.5 Applications of PET Hemp Fiber Composites 57 .3.6 Conclusion and Future Prospects 64 .References 64 .4 Poly(Lactic Acid) Thermoplastic Composites from Renewable Materials 69Khosrow Khodabakhshi .4.1 Introduction 69 .4.2 Poly(Lactic Acid) Production, Properties, and Processing 71 .4.3 Poly(Lactic Acid) Nanocomposites 74 .4.4 Poly(Lactic Acid) Natural Fibers–Reinforced Composites 79 .4.5 Conclusions 93 .References 93 .5 Chitosan–Based Composite Materials: Fabrication and Characterization 103Nabil A. Ibrahim and Basma M. Eid .5.1 Introduction 103 .5.2 Cs–Based Composite Materials 105 .5.3 Cs–Based Nanocomposites 105 .5.4 Characterization of Cs–based Composites 130 .5.5 Environmental Concerns 130 .5.6 Future Prospects 130 .References 133 .6 The Use of Flax Fiber–reinforced Polymer (FFRP) Composites in the Externally Reinforced Structures for Seismic Retrofitting Monitored by Transient Thermography and Optical Techniques 137C. Ibarra–Castanedo, S. Sfarra, D. Paoletti, A. Bendada and X. Maldague .6.1 Introduction 137 .6.2 Experimental Setup 139 .6.3 Conclusions 151 .Acknowledgments 152 .References 152 .7 Recycling and Reuse of Fiber–Reinforced Polymer Wastes in Concrete Composite Materials 155M.C.S. Ribeiro, A. Fiúza and A.J.M. Ferreira .7.1 Introduction 155 .7.2 Recycling Processes for Thermoset FRP Wastes 158 .7.3 End–Use Applications for Mechanically Recycled FRP Wastes 164 .7.4 Market Outlook and Future Perspectives 166 .Acknowledgment 167 .References 167 .8 Analysis of Damage in Hybrid Composites Subjected to Ballistic Impacts: An Integrated Non–destructive Approach 175S. Sfarra, F. López, F. Sarasini, J. Tirillò, L. Ferrante, S. Perilli, C. Ibarra–Castanedo, D. Paoletti, L. Lampani, E. Barbero, S. Sánchez–Sáez and X. Maldague .8.1 Introduction 176 .8.2 Lay–up Sequences and Manufacturing of Composite Materials 178 .8.3 Test Procedure 178 .8.4 Numerical Simulation 180 .8.5 Non–destructive Testing Methods and Related Techniques 191 .8.6 Results and Discussion 194 .8.7 Conclusions 206 .References 206 .9 Biofiber–Reinforced Acrylated Epoxidized Soybean Oil (AESO) Biocomposites 211Nazire Deniz Yýlmaz, G.M. Arifuzzaman Khan and Kenan Yýlmaz .9.1 Introduction 211 .9.2 Soybean Oil 213 .9.3 Functionalization of Soy Oil Triglyceride 216 .9.4 Manufacturing of AESO–Based Composites 227 .9.5 Targeted Applications 247 .9.6 Conclusion 247 .Acknowledgments 248 .References 248 .10 Biopolyamides and High–Performance Natural Fiber–Reinforced Biocomposites 253Shaghayegh Armioun, Muhammad Pervaiz and Mohini Sain .10.1 Introduction 253 .10.2 Polyamide Chemistry 256 .10.3 Overview of Current Applications of Polyamides 261 .10.4 Biopolyamide Reinforced with Natural Fibers 262 .10.5 Conclusion 268 .References 268 .11 Impact of Recycling on the Mechanical and Thermo–Mechanical Properties of Wood Fiber Based HDPE and PLA Composites 271Dilpreet S. Bajwa and Sujal Bhattacharjee .11.1 Introduction 271 .11.2 Experiments 275 .11.3 Results and Discussion 279 .11.4 Conclusion 289 .References 289 .12 Lignocellulosic Fibers Composites: An Overview 293Grzegorz Kowaluk .12.1 Wood 293 .12.2 Conventional Wood–Based Composites 296 .12.3 Lignocellulosic Composites with Reduced Weight 299 .12.4 Regenerated Cellulose Fibers 301 .12.5 Composites with Natural Fibres 303 .12.6 Sisal 303 .12.7 Banana Fibers 304 .12.8 Lignin and Cellulose 305 .12.9 Nanocellulose 306 .References 306 .13 Biodiesel–Derived Raw Glycerol to Value–Added Products: Catalytic Conversion Approach 309Samira Bagheri, Nurhidayatullaili Muhd Julkapli, Wageeh Abdulhadi Yehya Dabdawb and Negar Mansouri .13.1 Introduction 309 .13.2 Glycerol 313 .13.3 Catalytic Conversion of Glycerol to Value–added Products 316 .13.4 Conclusion 345 .References 346 .14 Thermo–Mechanical Characterization of Sustainable Structural Composites 367Marek Prajer and Martin P. Ansell .14.1 Introduction 367 .14.2 Structure and Mechanical Properties of Botanical Fibers 368 .14.3 Sustainable Polymer Matrix 372 .14.4 Interface in Natural Fiber–Sustainable Polymer Microcomposites 377 .14.5 Natural Fibers as a Reinforcement in Unidirectional and Laminar Composites 381 .14.6 Sustainable Structural Composites 384 .14.7 Discussion and Conclusions 401 .Acknowledgment 402 .References 402 .15 Novel pH Sensitive Composite Hydrogel Based on Functionalized Starch/clay for the Controlled Release of Amoxicillin 409T.S. Anirudhan, J. Parvathy and Anoop S. Nair .15.1 Introduction 409 .15.2 Experimental 412 .15.3 Results and Discussion 416 .15.4 Conclusions 421 .Acknowledgments 422 .References 422 .16 Preparation and Characterization of Biobased Thermoset Polymers from Renewable Resources and Their Use in Composites 425Sunil Kumar Ramamoorthy, Dan Åkesson, Mikael Skrifvars and Behnaz Baghaei .16.1 Introduction 425 .16.2 Characterization 427 .References 452 .17 Influence of Natural Fillers Size and Shape into Mechanical and Barrier Properties of Biocomposites 459Marcos Mariano, Clarice Fedosse Zornio, Farayde Matta Fakhouri and Sílvia Maria Martelli .17.1 Introduction 459 .17.2 Mechanical Properties of Biobased Composites 464 .References 480 .18 Composite of Biodegradable Polymer Blends of PCL/PLLA and Coconut Fiber: The Effects of Ionizing Radiation 489Yasko Kodama .18.1 Introduction 489 .18.2 Material and Method 494 .18.3 Results and Discussion 502 .18.4 Conclusion 519 .Acknowledgments 520 .References 521 .19 Packaging Composite Materials from Renewable Resources 525Behjat Tajeddin .19.1 Introduction 525 .19.2 Sustainable Packaging 527 .19.3 Packaging Materials/Composites 531 .19.4 Biomass Packaging Materials/Biobased Polymers 532 .19.5 Vegetable Oils/Essential Oils 538 .19.6 Aliphatic Polyesters 538 .19.7 Synthetic/Natural Polymers Reinforcement with Any Other Renewable Resources/Vegetables Fibers Blends 544 .19.8 Edible Packaging Materials (Composites) 545 .19.9 Processing Methods or Tools for Biopackaging Composites Productions 546 .19.10 Nanopackaging (Bionanocomposites) 549 .19.11 Preparation Methods for Packaging Nanocomposites 550 .19.12 Edible Nanocomposite–based Material 552 .19.13 Summary/Conclusion 552 .Abbreviations 553 .References 554 .20 Physicochemical Properties of Ash–Based Geopolymer Concrete 563M. Shanmuga Sundaram and S. Karthiyaini .20.1 Precursor of Geopolymerization 563 .20.2 Back Ground of Precursor 564 .20.3 Present Scenario of Geopolymer 564 .20.4 Geopolymer Concrete 565 .20.5 Constituents of Geopolymers 566 .20.6 Evolution of Geopolymer 566 .20.7 Works on Geopolymer Concrete 567 .20.8 Economic Benefits of Geopolymer Concrete 574 .20.9 Authors Study 574 .20.10 Conclusion 577 .References 578 .21 A Biopolymer Derived from Castor Oil Polyurethane: Experimental and Numerical Analyses 581R.R.C. da Costa, A.C. Vieira, R.M. Guedes and V. Tita .21.1 Introduction 581 .21.2 Experimental Analyses 586 .21.3 Constitutive Models 590 .21.4 Results 591 .21.5 Conclusions 602 .Acknowledgment 604 .References 604 .22 Natural Polymer–Based Biomaterials and Its Properties 607Md. Saiful Islam, Irmawati Binti Ramli, S.N. Kamilah, Azman Hassan and Abu Saleh Ahmed .22.1 Introduction 608 .22.2 Modifications of PLA 612 .22.3 PLA Applications 612 .22.4 Characterization by FT–IR 614 .22.5 Characterization by Optical Microscopy 615 .22.6 Characterization by Electron Microscopy 616 .22.7 Characterization by Mechanical Testing 618 .22.8 Characterization of GPC 624 .22.9 Characterization of Dynamic Mechanical Thermal Analysis 625 .References 626 .23 Physical and Mechanical Properties of Polymer Membranes from Renewable Resources 631Anika Zafiah Mohd Rus .23.1 Introduction 631 .23.2 Membranes Classifications 633 .23.3 Overview of Fabrication Method of Polymer Membranes from Renewable Resources 637 .23.4 Chemical Reaction of Renewable Polymer (BP) 640 .23.5 Morphological Changes of Polymer Membrane by Scanning Electron Microscope 645 .23.6 Water Permeability 648 .23.7 Conclusions 649 .References 650 .Index 653
- ISBN: 978-1-119-22366-5
- Editorial: John Wiley & Sons
- Encuadernacion: Cartoné
- Páginas: 688
- Fecha Publicación: 17/03/2017
- Nº Volúmenes: 1
- Idioma: Inglés