Handbook of Composites from Renewable Materials: Structure and Chemistry

Handbook of Composites from Renewable Materials: Structure and Chemistry

Thakur, Vijay Kumar
Thakur, Manju Kumari
Kessler, Michael R.

274,56 €(IVA inc.)

INDICE: Preface xix .About the Editors xxi .1 Carbon Fibers from Sustainable Resources 1 Rafael de Avila Delucis, Veronica Maria de Araujo Calado, Jose Roberto Moraes d Almeida and Sandro Campos Amico .1.1 Introduction 1 .1.2 Lignin and Other Sustainable Resources 3 .1.3 Carbon Fibers from Lignin 9 .1.4 Carbon Fibers from Other Sustainable Resources 12 .1.5 Concluding Remarks 15 .References 15 .2 Polylactic Acid Composites and Composite Foams Based on Natural Fibers 25 A.A. Pérez–Fonseca, H. Teymoorzadeh, J.R. Robledo–Ortíz, R. González–Nuñez and D. Rodrigue .2.1 Introduction 25 .2.2 PLA–Natural Fibers Composites 27 .2.3 PLA Composite Foams with Natural Fibers 36 .2.4 Thermal Annealing of PLA Composites 51 .2.5 Conclusions 55 .References 55 .3 Microcrystalline Cellulose and Related Polymer Composites: Synthesis, Characterization and Properties 61 Djalal Trache .3.1 Introduction 61 .3.2 Cellulose: Structure and Sources 63 .3.3 Microcrystalline Cellulose 66 .3.4 Characterization and Properties of Microcrystalline Cellulose 72 .3.5 MCC–based Composites 78 .3.6 Application of Composite Materials Based on MCC 83 .3.7 Conclusions 84 .Acknowledgments 85 .References 85 .4 Tannin–Based Foams: The Innovative Material for Insulation Purposes 93 Gianluca Tondi and Alexander Petutschnigg .4.1 First Tannin Foams and Their Characterization 93 .4.2 Formulation and Process Modifications 96 .4.3 Composite Materials: Tannin–based Panels 100 .4.4 Conclusions 102 .References 102 .5 Renewable Feedstock Vanillin–Derived Polymer and Composites: Structure Property Relationship 107 G. Madhumitha, Selvaraj Mohana Roopan, D. Devi Priya and G. Elango .5.1 Introduction 107 .5.2 Vanillin Production 109 .5.3 Some Common Applications of Vanillin 111 .5.4 Vanillin–Derived Polymers 112 .5.5 Vanillin–based Composites 119 .5.6 Applications of Vanillin–based Polymers and Composites 121 .5.7 Conclusion 124 .References 125 .6 Biomass–Based Formaldehyde–Free Bio–Resin for Wood Panel Process 129 Xiaobin Zhao .6.1 Introduction 129 .6.1.1 Wood Composite 129 .6.1.2 Biomass–based Adhesives 130 .6.2 Market Analysis of Biomass Based Adhesives 130 .6.3 Bio–based Adhesive Formulations 131 .6.4 Cambond Biomass Based Adhesives 135 .6.5 Bio–composites Based on Cambond Bio–Resin 142 .6.6 Final Remarks 145 .7 Bio–Derived Adhesives and Matrix Polymers for Composites 151 Mariusz . Mami ski and Renata Toczy owska–Mami ska .7.1 Introduction 151 .7.2 Glycerol 152 .7.3 Tannins 156 .7.4 Lignin 159 .7.5 Polysaccharides 165 .7.6 Proteins 170 .7.7 Oils 175 .7.8 Microorganism–produced biopolymers 177 .8 Silk Biocomposites: Structure and Chemistry 189 Alexander Morin, Mahdi Pahlevan and Parvez Alam .8.1 Introduction 189 .8.2 Spider Silk Protein 189 .8.3 Bombyx Mori Silk 195 .8.4 Silk Biocomposites: Applications 205 .9 Isolation and Characterisation of Water Soluble Polysaccharide from Colocasia esculenta Tubers 221 Harshal Ashok Pawar, Pritam Dinesh Choudhary and Amit Jagannath Gavasane .9.1 Introduction 221 .9.2 Materials and Methods 224 .9.3 Results and Discussion 230 .9.4 Conclusions 238 .Acknowledgements 238 .References 238 .10 Bio–based Fillers for Environmentally Friendly Composites 243 Thabang H. Mokhothu and Maya J. John .10.1 Introduction 243 .10.2 Bio–based Fillers/Reinforcements 244 .10.3 Bio–based Fillers Reinforced Biopolymer Composites 255 .10.4 Applications of Bio–based Composites 261 .10.5 Summary 262 .References 264 .11 Keratin–based Materials in Biotechnology 271 Hafiz M. N. Iqbal and Tajalli Keshavarz .11.1 Introduction 271 .11.2 Biopolymers 273 .11.3 Classification of Biopolymers 273 .11.4 Occurrence and Physicochemical Properties of Keratin 274 .11.5 Keratin–based Biomaterials 276 .11.6 Bio–composites 276 .11.7 Properties of Bio–composites for Bio–medical Applications 278 .11.8 Biomedical and Biotechnological Applications 280 .11.9 Potential Applications 281 .11.10 Concluding Remarks 284 .References 284 .12 Pineapple Leaf Fiber: A High Potential Reinforcement for Green Rubber and Plastic Composites 289 Taweechai Amornsakchai .12.1 Introduction 289 .12.2 Structure of Pineapple Leaf and Pineapple Leaf Fiber 292 .12.3 Conventional Methods of Fiber Extraction 293 .12.4 The Novel Mechanical Grinding Method 293 .12.5 Potential Applications of PALF as Reinforcement for Polymer Matrix Composites 298 .12.6 Concluding Remarks 304 .Acknowledgements 305 .References 305 .13 Insights into the Structure of Proteins Adsorbed onto Bioactive Glasses 309 Klára Magyari, Adriana Vulpoi and Lucian Baia .13.1 Introduction 309 .13.2 Bioactive Glasses as Renewable Materials 310 .13.3 Proteins Structure 313 .13.4 Suitable Methods for Proteins Investigation 315 .13.5 Interaction of Protein with Bioactive Glasses 320 .13.6 Summary 330 .Acknowledgements 331 .14 Effect of Filler Properties on the Antioxidant Response of Thermoplastic Starch Composites 337 Tomy J. Gutiérrez, Paula González Seligra, Carolina Medina Jaramillo, Lucía Famá and Silvia Goyanes .14.1 Introduction 337 .14.2 Starch–based Nanocomposites 338 .14.3 Regulatory Aspect 355 .14.4 Conclusions and Outlook 357 .Acknowledgements 358 .15 Preparation and Application of the Composite from Chitosan 371 Chen Yu .15.1 Introduction 371 .15.2 Composites from Chitosan and Natural Polymers 372 .15.3 Composites from Chitosan and Synthetic Polymers 380 .15.4 Composites from Chitosan and Biomacromolecules 388 .15.5 Composites from Chitosan and Inorganic Components 394 .15.6 Composites from Chitosan and Carbon Materials 409 .Acknowledgments 420 .16 Overview on Synthesis of Magnetic Bio Char from Discarded Agricultural Biomass 435 Manoj Tripathi, N.M. Mubarak, J.N. Sahu and P.Ganesan .16.1 Introduction 436 .16.2 Magnetic Bio Char 437 .16.3 Synthesis of Magnetic Bio Char 438 .16.4 Characteristics of Magnetic Bio Char 447 .16.5 Applications of Magnetic Bio Char 450 .16.6 Challenges and Future Scope of Magnetic Bio Char 452 .16.7 Summary 452 .Acknowledgement 454 .17 Polyurethanes Foams from Bio–Based and Recycled Components 461 S.Gaidukovs, U.Cabulis and G.Gaidukova .17.1 Introduction 461 .17.2 Experiments 464 .17.3 Results and Discussion 467 .Conclusions 478 .References 479 .18 Biodegradable Polymers for Protein and Peptide Therapeutics: Next Generation Delivery Systems 455 Sathish Dyawanapelly, Nishant Kumar Jain, Sindhu KR, Maruthi Prassana and Akhilesh Vikram Singh .18.1 Introduction 456 .18.2 Protein Therapeutics and Their Challenges 456 .18.3 Biodegradable Polymers for Conjugation 459 .18.4 PEGylated Protein Therapeutics 460 .18.5 Glycosylation of Proteins 470 .18.6 Polyglycerols (PG)–Protein Conjugates 480 .18.7 Dendrimer–Protein Conjugates 481 .18.8 HESylation of Proteins 485 .18.9 Dextran–Protein Conjugates 487 .18.10 Dextrin–Protein Conjugates 494 .18.11 Hyaluronic Acid (HA)–Protein Conjugates 496 .18.12 Some Other Polymer–Protein Conjugates 503 .18.13 PASylation 503 .18.14 Conclusion and Future Perspectives 504 .Abbreviations 504 .References 507

  • ISBN: 978-1-119-22362-7
  • Editorial: John Wiley & Sons
  • Encuadernacion: Cartoné
  • Páginas: 570
  • Fecha Publicación: 20/03/2017
  • Nº Volúmenes: 1
  • Idioma: Inglés